LoginSignup
0
0

More than 1 year has passed since last update.

2.17(難) 期待値の演算

Posted at

1.方針

「連続関数が増加関数」とは,「微分して0以上」である.また指数が連なっていて嫌なので対数を取る.式変形が難しい.

1.答案

A(t)の対数を取って

h(t)=\log A(t)=\frac{1}{t}\log\mathbb{E}_{X\sim f_X}[X^t]

と置く.h(t)がtの増加関数であるためには,h'(t)=>0であれば良い.

h'(t)=-\frac{1}{t^2}\log\mathbb{E}_{X\sim f_X}[X^t]+\frac{1}{t}\frac{1}{\mathbb{E}_{X\sim f_X}[X^t]}\mathbb{E}_{X\sim f_X}[X^t\log X]

であるから,

\begin{align}
h'(t)\geq0&\Leftrightarrow \frac{1}{t}\frac{\mathbb{E}_{X\sim f_X}[X^t\log X]}{\mathbb{E}_{X\sim f_X}[X^t]}\geq \frac{1}{t^2}\log\mathbb{E}_{X\sim f_X}[X^t]\\
&\Leftrightarrow t\mathbb{E}_{X\sim f_X}[X^t\log X]\geq \mathbb{E}_{X\sim f_X}[X^t]\log\mathbb{E}_{X\sim f_X}[X^t]\\
&\Leftrightarrow \mathbb{E}_{X\sim f_X}[X^t\log X^t]\geq\mathbb{E}_{X\sim f_X}[X^t]\log\mathbb{E}_{X\sim f_X}[X^t]\tag{1}
\end{align}

ここで,Y=X^tと置くと,(1)式は

\mathbb{E}_{X\sim f_X}[Y\log Y]\geq \mathbb{E}_{X\sim f_Y}[Y]\log\mathbb{E}_{X\sim f_X}[Y]\tag{2}

と書ける.さて,

g(y)=y\log y

なる関数を考えると,

g''(y)=\frac{1}{y}>0,\ \ \forall y>0

よりgは凸関数であるから,Jensenの不等式により(2)式は成立する.

2.方針

1.を利用する.H,Mはそれぞれt=-1,1をA(t)に代入したものなので,Aは増加関数よりH<=Mである.あとはGがt=0を代入したものであることを示す.

2.答案

\begin{align}
\lim_{t\rightarrow 0}h(t)&= \lim_{t\rightarrow0}\frac{\log\mathbb{E}_{X\sim f_X}[X^t]}{t}\\
&= \lim_{t\rightarrow0}\frac{\mathbb{E}[X^t\log X]}{\mathbb{E}[X^t]}\\
&= \mathbb{E}[\log X]
\end{align}

なので,

\begin{align}
\lim_{t\rightarrow0}(\mathbb{E}_{X\sim f_X}[X^t])^{1/t}&= \lim_{t\rightarrow0}\exp(h(t))\\
&= \exp(\mathbb{E}_{X\sim f_X}[\log X])\\
&= G
\end{align}

であるから,A(t)は増加関数より,H<=G<=Mが成り立つ.

参考文献

0
0
3

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0