LoginSignup
1
0

More than 1 year has passed since last update.

3.19(難) ベータ分布

Posted at

方針

ベータ分布と二項分布の関係を示す問題.X~Beta(alpha,beta)の時,確率密度関数は,

f_X(x)=\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}

ただしBをベータ関数といい,

B(\alpha,\beta)=\int_0^1t^{\alpha-1}(1-t)^{\beta-1}dt

である,ベータ関数は

B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}

という性質を持つ.全確率1を示す.

\begin{align}
\int_0^1\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}dx&= \frac{1}{B(\alpha,\beta)}\int_0^1x^{\alpha-1}(1-x)^{\beta-1}dx\\
&= \frac{B(\alpha,\beta)}{B(\alpha,\beta)}\\
&= 1
\end{align}

分布関数は,

\begin{align}
F_X(x)&= \int_0^x\frac{1}{B(\alpha,\beta)}t^{\alpha-1}(1-t)^{\beta-1}dt\\
&= \frac{1}{B(\alpha,\beta)}\int_0^xt^{\alpha-1}(1-t)^{\beta-1}dt
\end{align}

期待値と分散は,

\begin{align}
\mathbb{E}_{X\sim Beta(\alpha,\beta)}[X]&= \int_0^1\frac{1}{B(\alpha,\beta)}x^\alpha(1-x)^{\beta-1}dx\\
&= \frac{B(\alpha+1,\beta)}{B(\alpha,\beta)}\int_0^1\frac{1}{B(\alpha+1,\beta)}x^\alpha(1-x)^{\beta-1}dx\\
&= \frac{\Gamma(\alpha+1)\Gamma(\beta)}{\Gamma(\alpha+\beta+1)}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\\
&= \frac{\alpha}{\alpha+\beta}\\
\mathbb{E}_{X\sim Beta(\alpha,\beta)}[X^2]&= \int_0^1\frac{1}{B(\alpha,\beta)}x^{\alpha+1}(1-x)^{\beta-1}dx\\
&= \frac{B(\alpha+2,\beta)}{B(\alpha,\beta)}\int_0^1\frac{1}{B(\alpha+2,\beta)}x^{\alpha+1}(1-x)^{\beta-1}dx\\
&= \frac{\Gamma(\alpha+1)\Gamma(\beta)}{\Gamma(\alpha+\beta+2)}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\\
&= \frac{\alpha(\alpha+1)}{(\alpha+\beta+1)(\alpha+\beta)}\\
Var(X)&= \frac{\alpha(\alpha+1)}{(\alpha+\beta+1)(\alpha+\beta)}-\frac{\alpha^2}{(\alpha+\beta)^2}\\
&= \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}
\end{align}

答案

X~Bin(n,p)の時,

\begin{align}
P[X\leq x]=\sum_{k=0}^x{}_nC_xp^x(1-p)^{n-x}
\end{align}

Y~Beta(n-x,x+1)の時,

\begin{align}
P[Y\leq 1-p]&= \int_0^{1-p}\frac{1}{B(n-x,x+1)}y^{n-x-1}(1-y)^xdy\\
&= \frac{\Gamma(n+1)}{\Gamma(n-x)\Gamma(x+1)}\int_0^{1-p}y^{n-x-1}(1-y)^xdy\\
&= \frac{n!}{(n-x-1)!x!}\int_0^{1-p}\{\frac{1}{n-x}y^{n-x}\}'(1-y)^xdy\\
&= \frac{n!}{(n-x)!x!}\{\left[y^{n-x}(1-y)^x\right]_0^{1-p}+x\int_0^{1-p}y^{n-x}(1-y)^{x-1}dy\}\\
&= {}_nC_xp^x(1-p)^{n-x}+\frac{n!}{(n-x)!(x-1)!}\int_0^{1-p}y^{n-x}(1-y)^{x-1}dy\\
&= {}_nC_xp^x(1-p)^{n-x}+\frac{\Gamma(n+1)}{\Gamma(n-x+1)\Gamma(x)}\int_0^{1-p}y^{n-x}(1-y)^{x-1}dy\\
&= {}_nC_xp^x(1-p)^{n-x}+\int_0^{1-p}\frac{1}{B(n-x+1,x)}y^{n-x}(1-y)^{x-1}dy\tag{1}
\end{align}

ここで,

P_x=\int_0^{1-p}\frac{1}{B(n-x,x+1)}y^{n-x-1}(1-y)^xdy

と置くと,

\begin{align}
P_0&= \int_0^{1-p}\frac{1}{B(n,1)}y^{n-1}dy\\
&= n\int_0^{1-p}y^{n-1}dy\\
&= n\left[\frac{1}{n}y^n\right]_0^{1-p}\\
&= (1-p)^n\\
&= {}_nC_0p^0(1-p)^n
\end{align}

である.(1)より,

\begin{align}
P[Y\leq 1-p]&= P_x\\
&= {}_nC_xp^x(1-p)^{n-x}+P_{x-1}\\
&= {}_nC_xp^x(1-p)^{n-x}+{}_nC_{x-1}p^{x-1}(1-p)^{n-x+1}+P_{x-2}\\
&\vdots\\
&= {}_nC_xp^x(1-p)^{n-x}+{}_nC_{x-1}p^{x-1}(1-p)^{n-x+1}+...+{}_nC_0p^0(1-p)^n\\
&= \sum_{k=0}^x{}_nC_kp^k(1-p)^{n-k}\\
&= P[X\leq x]
\end{align}

参考文献

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0