LoginSignup
1
0

More than 1 year has passed since last update.

3.10(標準) 対数正規分布

Posted at

答案

Xの期待値は,

\begin{align}
\mathbb{E}_{X\sim f_X}[X]&= \int_0^\infty\frac{1}{\sqrt{2\pi}}\exp\{-\frac{(\log x)^2}{2}\}dx\tag{1}
\end{align}

t=log xと置換すると,

\begin{align}
(1)&= \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}}\exp(-\frac{t^2}{2}+t)dt\\
&= \int_{-\infty}^\infty\frac{1}{\sqrt{2\pi}}\exp\{-\frac{(t-1)^2}{2}+\frac{1}{2}\}dt\\
&= e^{1/2}
\end{align}

分散は,

\begin{align}
\mathbb{E}_{X\sim f_X}[X^2]&= \int_0^\infty\frac{x}{\sqrt{2\pi}}\exp\{-\frac{(\log x)^2}{2}\}dx\tag{2}
\end{align}

t=log xと置換すると,

\begin{align}
(2)&= \int_{-\infty}^\infty\frac{1}{\sqrt{2\pi}}\exp(-\frac{t^2}{2}+2t)dt\\
&= \int_{-\infty}^\infty\frac{1}{\sqrt{2\pi}}\exp\{-\frac{(t-2)^2}{2}+2\}dt\\
&= e^2\\
Var(X)&= e^2-e=e
\end{align}

次に,Y=logXなる変換を考える.

\begin{align}
P[Y\leq y]&= P[\log X\leq y]\\
&= P[X\leq e^y]\\
&= \int_0^{e^y}f_X(x)dx
\end{align}

なので,

\begin{align}
f_Y(y)&= f_X(e^y)\frac{de^y}{dy}\\
&= \frac{1}{\sqrt{2\pi}}\exp\{\frac{-(\log e^y)^2}{2}+y\}\\
&= \frac{1}{\sqrt{2\pi}}\exp(-\frac{y^2}{2})
\end{align}

参考文献

1
0
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0