LoginSignup
0
0

More than 1 year has passed since last update.

3.15(標準) 正規分布3 (方針で偶関数,奇関数を解説)

Posted at

方針

偶関数,奇関数について解説する.

偶関数,奇関数


実数直線上に定義する関数f(x)が

f(-x)=f(x)

を満たす時,fは偶関数であると言い,fのグラフはy軸で対称となる.またf(x)が

f(-x)=-f(x)

を満たす時,fは奇関数であると言い,fのグラフは原点で対称となる.


奇関数の積分は0であることを用いる.

答案

g(x)=\frac{x^k}{\sqrt2\pi}\exp(-\frac{x^2}{2})

と置くと,kが奇数の時

\begin{align}
g(-x)&= \frac{(-x)^k}{\sqrt{\sqrt{2\pi}}}\exp(-\frac{(-x)^2}{2})\\
&= \frac{-x^k}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})\\
&= -g(x)
\end{align}

より,gは奇関数なので

\mathbb{E}_{X\sim\mathcal{N}(0,1)}[X^k]=\int_{-\infty}^\infty g(x)dx=0

kが偶数の時,Y=X^2と置くと

\begin{align}
\mathbb{E}_{X\sim\mathcal{N}(0,1)}[X^k]&= \mathbb{E}_{Y\sim\chi_1^2}[Y^{k/2}]\\
&= \int_0^\infty\frac{(\frac{1}{2}^{1/2}}{\Gamma(\frac{1}{2})}y^{\frac{k+1}{2}-1}\exp(-\frac{1}{2}y)\\
&= \frac{(\frac{1}{2})^{1/2}}{\Gamma(\frac{1}{2})}\frac{\Gamma(\frac{k+1}{2})}{(\frac{1}{2})^{\frac{k+1}{2}}}\int_0^\infty\frac{(\frac{1}{2})^{\frac{k+1}{2}}}{\Gamma(\frac{k+1}{2}}y^{\frac{k+1}{2}-1}\exp(-\frac{1}{2}y)dy\\
&= 2^{k/2}\frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{1}{2})}
\end{align}

参考文献

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0