1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

3.14(標準) 正規分布2

Last updated at Posted at 2021-08-07

方針

標準正規分布に従う確率変数Xの確率密度関数は,

f_X(x)=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})

である.

1.答案

\begin{align}
\mathbb{E}_{X\sim\mathcal{N}(0,1)}[X^2]&= \int_{-\infty}^\infty\frac{x^2}{\sqrt{2\pi}}\exp(-\frac{x^2}{2}0dx\\
&= \int_{-\infty}^\infty\frac{x}{\sqrt{2\pi}}\{-\exp(\frac{x^2}{2})\}'dx\\
&= \left[-\frac{x}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})\right]_{-\infty}^\infty+\int_{-\infty}^\infty\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})dx\\
&= 1
\end{align}

2.答案

Y=X^2の分布関数は,

\begin{align}
F_Y(y)&= P[Y\leq y]\\
&= P[X^2\leq y]\\
&= P[-\sqrt{y}\leq X\leq\sqrt{y}]\\
&= \int_{-\infty}^{\sqrt{y}}f_X(x)dx-\int_{-\infty}^{-\sqrt{y}}f_X(x)dx
\end{align}

より,

\begin{align}
f_Y(y)&= f_X(\sqrt{y})\frac{1}{2\sqrt{y}}-f_X(-\sqrt{y})(-\frac{1}{2\sqrt{y}})\\
&= \frac{1}{\sqrt{y}}f_X(\sqrt{y})\\
&= \frac{1}{\sqrt{2\pi y}}\exp(-\frac{y}{2})
\end{align}

である.従って,

\begin{align}
\mathbb{E}_{Y\sim f_Y}[Y]&= \int_0^\infty\frac{1}{\sqrt{2\pi}}y^{1/2}\exp(-\frac{1}{2}y)dy\\
&= \frac{1}{\sqrt{2\pi}}\frac{\Gamma(\frac{3}{2})}{(\frac{1}{2})^{3/2}}\int_0^\infty\frac{(\frac{1}{2})^{3/2}}{\Gamma(\frac{3}{2})}y^{\frac{3}{2}-1}\exp(-\frac{1}{2}y)dy\\
&= 1
\end{align}

3.答案

Y=|X|の分布関数は,

\begin{align}
F_Y(y)&= P[Y\leq y]\\
&= P[|X|\leq y]\\
&= P[-y\leq X\leq y]\\
&= \int_{-\infty}^yf_X(x)dx-\int_{-\infty}^{-y}f_X(x)dx
\end{align}

確率密度関数は,

\begin{align}
f_Y(y)&= f_X(y)-f_X(-y)(-1)\\
&= 2f_X(y)\\
&= \frac{2}{\sqrt{2\pi}}\exp(-\frac{y^2}{2})
\end{align}

より,

\begin{align}
\mathbb{E}_{Y\sim f_Y}[Y]&= \int_0^\infty\frac{2y}{\sqrt{2\pi}}\exp(-\frac{y^2}{2})dy\\
&= \left[-\frac{2}{\sqrt{2\pi}}\exp(-\frac{y^2}{2})\right]_0^\infty\\
&= \sqrt{\frac{2}{\pi}}\\
\mathbb{E}_{Y\sim f_Y}[Y^2]&= \int_0^\infty\frac{2y^2}{\sqrt{2\pi}}\exp(-\frac{y^2}{2})dy\\
&= \int_0^\infty\frac{2y}{\sqrt{2\pi}}\{-\exp(-\frac{y^2}{2})\}'dy\\
&= \left[-\frac{2y}{\sqrt{2\pi}}\exp(-\frac{y^2}{2})\right]_0^\infty+\int_0^\infty\frac{2}{\sqrt{2\pi}}\exp(-\frac{y^2}{2})dy\\
&= \int_0^\infty\frac{1}{\sqrt{2\pi}}t^{-\frac{1}{2}}\exp(-\frac{1}{2}t)dt,\ \ \ \ (t=y^2)\\
&= \frac{1}{\sqrt{2\pi}}\frac{\Gamma(\frac{1}{2})}{(\frac{1}{2})^{1/2}}\int_0^\infty\frac{(\frac{1}{2})^{1/2}}{\Gamma(\frac{1}{2})}t^{\frac{1}{2}-1}\exp(-\frac{1}{2}t)dt\\
&= 1\\
Var(Y)&= 1-\frac{2}{\sqrt{\pi}}
\end{align}

参考文献

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?