LoginSignup
0
0

More than 1 year has passed since last update.

3.16(標準) 正規分布4

Posted at

1.答案

Z=|X|^kの分布関数は,

\begin{align}
F_Z(z)&= P[|X|^k\leq z]\\
&= P[|X|\leq z^{1/k}]\ \ \ \ \ \because 0<k\\
&= P[-z^{1/k}\leq X\leq z^{1/k}]\\
&= \int_{-\infty}^{z^{1/k}}f_X(x)dx-\int_{-\infty}^{-z^{1/k}}f_X(x)dx
\end{align}

ゆえ,確率密度関数は

\begin{align}
f_Z(z)&= f_X(z^{1/k})(\frac{1}{k}z^{\frac{1}{k}-1})-f_X(-z^{1/k})(-\frac{1}{k}z^{\frac{1}{k}-1})\\
&= 2f_X(z^{1/k})(\frac{1}{k}z^{\frac{1}{k}-1})-f_X(-z^{1/k})(-\frac{1}{k}z^{\frac{1}{k}-1})\\
&= 2f_X(z^{1/k})(\frac{1}{k}z^{\frac{1}{k}-1})\\
&= 2\frac{1}{\sqrt{2\pi}}\exp(-\frac{z^{2/k}}{2})\frac{1}{k}z^{\frac{1}{k}-1}\\
&= \frac{2}{k\sqrt{2\pi}}z^{\frac{1}{k}-1}\exp(-\frac{z^{2/k}}{2})
\end{align}

2.答案

Z=|X|^2mと置くと,

f_Z(z)=\frac{1}{m\sqrt{2\pi}}z^{\frac{1}{2m}-1}\exp(-\frac{z^{1/m}}{2})

なので,

\begin{align}
\mathbb{E}_{X\sim f_X}[X^{2m}]&= \mathbb{E}_{X\sim f_X}[|X|^{2m}]\\
&= \mathbb{E}_{Z\sim f_Z}[Z]\\
&= \int_0^\infty\frac{1}{m\sqrt{2\pi}}z^{\frac{1}{2m}}\exp(-\frac{1}{2}z^{\frac{1}{m}})dz\tag{1}
\end{align}

ここで,t=z^1/mと置換すると,

\begin{align}
(1)&= \int_0^\infty\frac{1}{m\sqrt{2\pi}}t^{1/2}\exp(-\frac{1}{2}t)mt^{m-1}dt\\
&= \int_0^\infty\frac{1}{\sqrt{2\pi}}t^{(m+\frac{1}{2})-1}\exp(-\frac{1}{2}t)dt\\
&= \frac{(\frac{1}{2})^{1/2}}{\Gamma(\frac{1}{2})}\frac{\Gamma(\frac{1}{2}+m)}{(\frac{1}{2})^{\frac{1}{2}+m}}\int_0^\infty\frac{(\frac{1}{2})^{\frac{1}{2}+m}}{\Gamma(\frac{1}{2}+m)}t^{(m+\frac{1}{2})-1}\exp(-\frac{1}{2}t)dt\\
&= \frac{2^m\Gamma(\frac{1}{2}+m)}{\Gamma(\frac{1}{2})}
\end{align}

次に,Z=|X|^{2m+1}と置くと,

f_Z(z)=\frac{2}{(2m+1)\sqrt{2\pi}}z^{\frac{1}{2m+1}-1}\exp(-\frac{z^{\frac{2}{2m+1}}}{2})

であるから

\begin{align}
\mathbb{E}_{X\sim f_X}[|X|^{2m+1}]&= \mathbb{E}_{Z\sim f_Z}[Z]\\
&= \int_0^\infty\frac{2}{(2m+1)\sqrt{2\pi}}z^{\frac{1}{2m+1}}\exp(-\frac{1}{2}z^{\frac{2}{2m+1}})dz\tag{2}
\end{align}

ここで,

t=z^{\frac{2}{2m+1}}

と置換すると

\begin{align}
(2)&= \int_0^\infty\frac{1}{\sqrt{2\pi}}t^{(m+1)-1}\exp(-\frac{1}{2}t)dt\\
&= \frac{(\frac{1}{2})^{1/2}}{\Gamma(\frac{1}{2})}\frac{\Gamma(m+1)}{(\frac{1}{2})^{m+1}}\int_0^\infty\frac{(\frac{1}{2})^{m+1}}{\Gamma(m+1)}t^{(m+1)-1}\exp(-\frac{1}{2}t)dt\\
&= \frac{2^{m+\frac{1}{2}}\Gamma(m+1)}{\Gamma(\frac{1}{2}}
\end{align}

参考文献

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0