LoginSignup
0
0

4.6 (標準) 二変数確率変数の変数変換2 一様分布に従う確率変数の和,積 (畳み込み)

Last updated at Posted at 2021-10-18

方針

\begin{align}
\begin{cases}
Z=X+Y\\
W=XY
\end{cases}
\end{align}

という変換では一対一にならない (X=,Y=,と一意に書けない) ため,Z,Wそれぞれを畳み込みで求める.それぞれの定義域に注意.

答案

\begin{align}
\begin{cases}
Z=X+Y\\
V=Y
\end{cases}\Leftrightarrow
\begin{cases}
X=Z-V\\
Y=V
\end{cases}
\end{align}

なる一対一変換を考える.

\begin{align}
f_{Z,V}(z,v)&= f_X(z-v)f_Y(v)\\
\therefore f_Z(z)&= \int f_X(z-v)f_Y(v)dv,\ \ \ (0<v<1,0<z-v<1)
\end{align}

zの値によって積分範囲が変わるため,場合分けして求める.0<z<1の時,0<v<zより

f_Z(z)=\int_0^zdv=z

1<z<2の時,z-1<v<1より,

f_Z(z)=\int_{z-1}^1dv=2-z

次に,

\begin{align}
\begin{cases}
W=XY\\
U=Y
\end{cases}\Leftrightarrow
\begin{cases}
X=W/U\\
Y=U
\end{cases}
\end{align}

なる一対一変換を考える.

\left|\frac{\partial (X,Y)}{\partial(W,U)}\right|=\left|\begin{pmatrix}
1/u & -w/u^2\\
0 & 1
\end{pmatrix}\right|=\frac{1}{u}

なので,

\begin{align}
f_{W,U}(w,u)&= f_X(\frac{w}{u})f_Y(u)\frac{1}{u}\\
\therefore f_W(w)&= \int f_X(\frac{w}{u})f_Y(u)\frac{1}{u}du,\ \ (0<\frac{w}{u}<1,0<u<1)
\end{align}

ゆえ,w<u<1であるから,

f_W(w)=\int_w^1\frac{1}{u}du=-\log w

参考文献

0
0
2

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0