ビッグデータ

2018年のビッグデータの向かう先と注目分野

2017年も終わりつつある中、2018年の技術トレンドを予測する記事がオンラインメディアにもよくみられます。特に、企業活動の中で浸透しつつあるビッグデータが、この先、どこに向かうのか、2018年の注目分野は何かについて目につきましたので、ピックアップしてご紹介します。
ひとつはビッグデータを分析環境にスムーズにもってくるための技術、たとえばデータストリーミング技術となります。ビッグデータの分析手法としてはAIがますます重要視されてきています。ビッグデータのソースとしては消費財のマーケティング・トランザクションデータからIoTそれに製造業における工場の製造機器のリアルタイムな稼働状況データにまでひろがりつつ、それにともない新たな技術的な課題がみえてくる2018年となりそうです。

※下記サイトからの転載。ビッグデータ・AIなどに関するトピックを毎週取り上げています。
TechCrowd: https://www.techcrowd.jp/related/

2018年のビッグデータ分野はどうなる--注目トレンド5選

ZDnet Japanの海外コメンタリーで、海外CBS Interactive発の記事を日本向けに編集したものです。
まとめると、Machine Learningを構築するフレームワークも整備されつつあり、Machine Learning とAIの進歩によって推進されるイノベーションと、データ駆動による自動化を容易にするテクノロジーの進化、たとえば・ストリーミング技術や・トランザクション処理とアナリティクス処理のハイブリッド化などや、データ駆動型製品によってますます生み出される多くのデータにより、優れた洞察がもたらされ、さらなる利益がもたされる結果、投資が活性化されより優れた製品が登場し、多くのデータが生み出されるという循環が進むだろうということのようです。

5つの注目すべき技術トレンドとしてピックアップされているものは以下の通り。
・Machine Learningのフィードバックループ
・アナリティクススタックの拡大
・Insight Paas
・トランザクション処理とアナリティクス処理のハイブリッド
・ストリーミング処理技術のメインストリーム化

製造業IoTとは何か、インダストリアル・ビッグデータが分かれば見えてくる!

ITmediaの発行する日本の製造業のものづくりに関するオンラインメディア”MONOist”の記事です。インダストリアル・ビッグデータに関するソリューションを提供しているISIDからの製品紹介およびインダストリアル・ビッグデータを扱う際のポイントの解説記事です。

現状のビッグデータの手法は、基本的にWebマーケティングなどのマーケティング向けビッグデータ分析で成功している手法を、そのまま製造業のエンジニアリング業務に展開し、結果を出せないでいるケースが多いとのこと。

商業ビッグデータが相関関係や統計的な優位性が重要であるのに対して、機器の構造によるシステム全体と、コンポーネント間の関係が複雑に関連している製品、機器や生産設備においては、物理法則などの因果関係を踏まえたうえでデータ分析をしないと、よい結果を導き出せないことがポイントのようです。

また、ビッグデータ分析結果の「説明性」が産業分野では重要になるとのこと。確かに、ディープラーニングなど、なぜだか結果が出たという面がありますが、高度な品質を求められる産業設備の故障予知などに適用するためには、
結果の正当性を理解できるように説明できる面も重要になるようです。

ビッグデータ×メールで何が実現できるのか?スタディサプリが明かす秘伝のメールマーケ

Markezineに掲載された、チーターデジタル主催の「Back to Mail Marketing 2017」における、リクルートマーケティングパートナーズでビッグデータエバンジェリストを務める萩原静厳氏の講演「One to Oneメールマーケティング」の紹介記事です。秀逸です。

月額980円で、小学・中学・高校・大学受験に必要な5教科18科目、1万本以上の授業動画を配信するオンライン学習サービス「スタディサプリ」における、データ分析とメールマーケティングの事例を紹介してくれています。

印象的なコメントを列記します。

・今までユーザーの会員情報は『氏名』『年齢』『住所』などストックなもので、それをマーケティング活動に使っていたが、『訪問回数』『前回訪問日』などのフローな情報こそ重要だと考えている。
・表現力(+情報量)はデジタルのコミュニケーション手法の中でメールが一番強い
・パーソナライズすると「あなたの」好きなものはこれですよねとレコメンドがホットになっていくが、それを見せるのは情報量を担保できるメールが適している

製造業におけるビッグデータ活用の盲点と対策(2)

DIAMOND onlineの「ポスト・ビッグデータ時代の経営」特集の中の記事です。現在、多くの企業で主として取り組まれているビッグデータ対応は、センサー等の「扱いやすい、定型化されたビッグデータ」で、機械のデータを集約したものと言えます。これだけでも、製造現場の生産性向上、高度化を図ることは可能ではありますが、今後、企業がさらなる競争力を得るためには、企業の英知が集約された真のビッグデータである暗黙知の活用は必須であり、暗黙知を形式知とするための現場の知見のデジタルデータ化のプロセス、非定型のデータの自然言語処理などによる定型データへの変換などの手法の説明をしてくれています。