0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

基底とは

Last updated at Posted at 2024-05-03

定義

線型空間$V$の有限個のベクトル$\boldsymbol{e}_1, \boldsymbol{e}_2, ... , \boldsymbol{e}_n$がつぎの二条件を充すとき、$\boldsymbol{e}_1, \boldsymbol{e}_2, ... , \boldsymbol{e}_n$は$V$の基底であると言う

  • $e_1, e_2, ... , e_n$は線形独立である
  • $V$の任意のベクトルは,$\boldsymbol{e}_1, \boldsymbol{e}_2, ... , \boldsymbol{e}_n$の線型結合として表される

(斎藤正彦:線型代数入門,東京大学出版会,1966.)

補足

線型空間$V$のベクトル$\boldsymbol{a}_1, \boldsymbol{a}_2, ... , \boldsymbol{a}_n$に対し、

  • $ c_1\boldsymbol{a}_1 + c_2\boldsymbol{a}_2 + ... + c_n\boldsymbol{a}_n = \boldsymbol{0} $ ならば $ c_1 + c_2 + ... + c_n = 0$が成り立つ時、$\boldsymbol{a}_1, \boldsymbol{a}_2, ... , \boldsymbol{a}_n$は線形独立であると言う
  • $ c_1\boldsymbol{a}_1 + c_2\boldsymbol{a}_2 + ... + c_n\boldsymbol{a}_n $ の形のベクトルを、$\boldsymbol{a}_1, \boldsymbol{a}_2, ... , \boldsymbol{a}_n$の線型結合と言う

線型空間(ベクトル空間)の定義は「数学の景色」による説明がわかりやすいです。
https://mathlandscape.com/vector-space/

参考文献

佐藤恒雄, 野澤宗平:初歩から学べる線形代数,培風館,2007.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?