0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

3.12(標準) ラプラス分布

Posted at

Xの期待値は,

\begin{align}
\mathbb{E}_{X\sim f_X}[X]&= \int_{-\infty}^\infty\exp\{-\frac{|x-\mu|}{\sigma}\}dx\\
&= \int_{-\infty}^\mu\frac{x}{2\sigma}\exp(\frac{x-\mu}{\sigma}dx+\int_{\mu}^\infty \frac{x}{2\sigma}\exp(-\frac{x-\mu}{\sigma})dx\\
&= \int_{-\infty}^\mu\frac{x}{2}\{\exp(\frac{x-\mu}{\sigma})\}'dx+\int_\mu^\infty\frac{x}{2}\{-\exp(\frac{x-\mu}{\sigma})\}'dx\\
&= \left[\frac{x}{2}\exp(\frac{x-\mu}{\sigma})\right]_{-\infty}^\mu-\int_{-\infty}^\mu\frac{1}{2}\exp(\frac{x-\mu}{\sigma})dx\\
& \ \ \ +\left[-\frac{x}{2}\exp(-\frac{x-\mu}{\sigma})\right]_\mu^\infty+\int_\mu^\infty\frac{1}{2}\exp(-\frac{x-\mu}{\sigma})dx\\
&= \mu-\frac{\sigma}{2}+\frac{\sigma}{2}\\
&= \mu 
\end{align}

分散は,

\begin{align}
Var(X)&= \int_{-\infty}^\infty\frac{(x-\mu)^2}{2\sigma}\exp\{-\frac{|x-\mu|}{\sigma}\}dx\\
&= \int_{-\infty}^\mu\frac{(x-\mu)^2}{2\sigma}\exp(\frac{x-\mu}{\sigma})dx\\
&\ \ \ +\int_\mu^\infty\frac{(x-\mu)^2}{2\sigma}\exp\{-\frac{(x-\mu)}{\sigma}\}dx\\
&= \int_{-\infty}^\mu\frac{(x-\mu)^2}{2}\{\exp(\frac{x-\mu}{\sigma})\}'dx\\
&\ \ \ -\int_\mu^\infty\frac{(x-\mu)^2}{2}\{\exp(\frac{-x+\mu}{\sigma})\}'dx\\
&= \left[\frac{(x-\mu)^2}{2}\exp(\frac{x-\mu}{\sigma})\right]_{-\infty}^\mu-\int_{-\infty}^\mu(x-\mu)\exp(\frac{x-\mu}{\sigma})dx\\
&\ \ \ -\left[\frac{(x-\mu)^2}{2}\exp(\frac{-x+\mu}{\sigma})\right]_\mu^\infty+\int_\mu^\infty(x-\mu)\exp(\frac{-x+\mu}{\sigma})dx\\
&= -\int_{-\infty}^\mu(x-\mu)\exp(\frac{x-\mu}{\sigma})dx+\int_\mu^\infty(x-\mu)\exp(\frac{-x+\mu}{\sigma})dx\\
&= -\int_{-\infty}^\mu\sigma(x-\mu)\{\exp(\frac{x-\mu}{\sigma})\}'dx-\int_\mu^\infty\sigma(x-\mu)\{\exp(\frac{-x+\mu}{\sigma})\}'dx\\
&= -\left[\sigma(x-\mu)\exp(\frac{x-\mu}{\sigma})\right]_{-\infty}^\mu+\int_{-\infty}^\mu\sigma\exp(\frac{x-\mu}{\sigma})dx\\
&\ \ \ -\left[\sigma(x-\mu)\exp(\frac{-x+\mu}{\sigma})\right]_\mu^\infty+\int_\mu^\infty\sigma\exp(\frac{-x+\mu}{\sigma})dx\\
&= \left[\sigma^2\exp(\frac{x-\mu}{\sigma})\right]_{-\infty}^\mu+\left[\sigma^2\exp(\frac{-x+
\mu}{\sigma})\right]_\mu^\infty\\
&= 2\sigma^2
\end{align}

参考文献

0
0
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?