0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

3.21(難) 指数分布2

Posted at

1.方針

2.7で用いた小技を利用する.今,X>tより,

\begin{align}
x-t&= \int_0^xdy-\int_0^tdy\\
&= \int_t^xdy
\end{align}

である.

1.答案

\begin{align}
r(t)&= \mathbb{E}_{X\sim f_X}[X-t|X\geq t]\\
&= \int_t^\infty(x-t)P[X=x|X\geq t]dx\\
&= \int_t^\infty (x-t)\frac{P[X=x]}{P[X\geq t]}dx\\
&= \int_t^\infty(x-t)\frac{f_X(x)}{1-F_X(t)}dx\\
&= \frac{1}{1-F_X(t)}\int_t^\infty(x-t)f_X(x)dx\\
&= \frac{1}{1-F_X(t)}\int_t^\infty dx\int_t^xdyf_X(x)\\
&= \frac{1}{1-F_X(t)}\int_t^\infty dy\int_y^\infty dxf_X(x)\\
&= \frac{1}{1-F_X(t)}\int_t^\infty\{\int_y^\infty f_X(x)dx\}dy\\
&= \frac{1}{1-F_X(t)}\int_t^\infty 1-F_X(y)dy\\
&= \frac{1}{1-F_X(t)}\int_t^\infty 1-F_X(x)dx
\end{align}

今,指数分布の分布関数は

F_X(x)=1-e^{-\lambda x}

なので,

\begin{align}
r(t)&= \frac{1}{1-(1-e^{-\lambda t})}\int_t^\infty\{1-(1-e^{-\lambda x})\}dx\\
&= \frac{1}{e^{-\lambda t}}\int_t^\infty e^{-\lambda x}dx\\
&= \frac{1}{e^{-\lambda t}}\left[-\frac{1}{\lambda}e^{-\lambda x}\right]_t^\infty\\
&= \frac{1}{\lambda}
\end{align}

2.方針

x^2=2\int_0^xtdt

を用いる.

2.答案

\begin{align}
2\int_0^\infty r(t)\{1-F_X(t)\}dt&= 2\int_0^\infty\frac{1}{1-F_X(t)}\int_t^\infty 1-F_X(x)dx\{1-F_X(t)\}dt\\
&= 2\int_0^\infty dt\int_t^\infty dx\{1-F_X(x)\}\\
&= 2\int_0^\infty dx\int_0^xdt\{1-F_X(x)\}\\
&= 2\int_0^\infty x\{1-F_X(x)\}dx\\
&= \int_0^\infty 2x\{\int_x^\infty f_X(t)dt\}dx\\
&= \int_0^\infty dx\int_x^\infty dt2xf_X(t)\\
&= \int_0^\infty dt\int_0^tdx2xf_X(t)\\
&= \int_0^\infty\{2\int_0^t2xdx\}f_X(t)dt\\
&= \int_0^\infty t^2f_X(t)dt\\
&= \mathbb{E}_{X\sim f_X}[X^2]
\end{align}

参考文献

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?