1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

3.1(易) 離散一様分布

Last updated at Posted at 2021-07-20

方針

離散一様分布とは,確率変数が取りうる有限集合の全ての値について,確率が同様に確からしい場合の分布,すなわち異なるN通りの状態をとる確率変数Xが各状態を取る確率が等しく1/Nであるような分布である.確率密度関数は,

f_X(x)=\frac{1}{N}\ \ \ \ x=1,...,N

期待値は,

\begin{align}
\mathbb{E}[X]&= \sum_{x=1}^N\frac{x}{N}\\
&= \frac{1+...+N}{N}\\
&= \frac{N(N+1)}{2N}\\
&= \frac{N+1}{2}
\end{align}

分散は,

\begin{align}
Var(X)&= \sum_{x=1}^N\frac{1}{N}(x-\frac{N+1}{2})^2\\
&= \frac{1}{N}\sum_{x=1}^N\{x^2-(N+1)x+\frac{(N+1)^2}{4}\}\\
&= \frac{1}{N}\{\frac{1}{6}N(N+1)(2N+1)-\frac{N(N+1)^2}{2}+\frac{N(N+1)^2}{4}\}\\
&= \frac{2(N+1)(2N+1)-3(N+1)^2}{12}\\
&= \frac{(N+1)(N-1)}{12}
\end{align}

本問では確率母関数から平均,分散を導出する.

答案

確率母関数は,

\begin{align}
G_X(s)&= \mathbb{E}_{X\sim f_X}[s^X]\\
&= \sum_{x=1}^N\frac{s^x}{N}\\
&= \frac{s(1-s^N)}{N(1-s)}\tag{1}
\end{align}

ここで,

1-s^N=(1-s)(1+s+...+s^{N-1})

であるから,

\begin{align}
(1)&= \frac{s(1+s+...+s^{N-1})}{N}\\
&= \frac{1}{N}\sum_{k=1}^Ns^k
\end{align}

確率母関数を微分してs=1を代入することで期待値を求める.

\begin{align}
\frac{1}{ds}G_X(s)&= \frac{1}{N}\sum_{k=1}^Nks^{k-1}\\
\therefore\mathbb{E}_{X\sim f_X}[X]&= \left.\frac{1}{ds}G_X(s)\right|_{s=1}\\
&= \frac{1}{N}\sum_{k=1}^Nk\\
&= \frac{1}{N}\frac{N(N+1)}{2}\\
&= \frac{N+1}{2}
\end{align}

次に,確率母関数を二階微分してs=1を代入することで2次階乗モーメントを求める.

\begin{align}
\frac{d^2}{ds^2}G_X(s)&= \frac{1}{N}\sum_{k=1}^Nk(k-1)s^{k-2}\\
\therefore\mathbb{E}_{X\sim f_X}[X(X-1)]&= \left.\frac{d^2}{ds^2}G_X(s)\right|_{s=1}\\
&= \frac{1}{N}\sum_{k=!}^Nk(k-1)\\
&= \frac{1}{N}\{\frac{1}{6}N(N+1)(2N+1)-\frac{N(N+1)}{2}\}\\
&= \frac{(N+1)(2N+1)}{6}-\frac{N+1}{2}
\end{align}

ゆえ,分散は,

\begin{align}
Var(X)&= \mathbb{E}_{X\sim f_X}[X(X-1)]+\mathbb{E}_{X\sim f_X}[X]-\{\mathbb{E}_{X\sim f_X}[X]\}^2\\
&= \frac{(N+1)(2N+1)}{6}-\frac{N+1}{2}+\frac{N+1}{2}-\frac{(N+1)^2}{4}\\
&= \frac{(N+1)(N-1)}{12}
\end{align}

参考文献

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?