0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

Standard受験編288

Last updated at Posted at 2023-03-06

二つの放物線C


C_{1}:y=x^2 と
C_{2}:y=x^2-6x+15の共通接線をlとする。\\
(1)lの方程式を求めC_{1},C_{2}およびlを図示せよ\\
(2)C_{1},C_{2}およびlによって囲まれた部分の面積を求めよ\\

解答

from sympy import *
from sympy.abc import *
eq1 = x**2
eq2=x**2-6*x+15
eq3=m*x+n
print(eq1-eq3)#−𝑚𝑥−𝑛+𝑥^2
print(eq2-eq3)#−𝑚𝑥−𝑛+𝑥2−6𝑥+15

ここらか判別式を計算

hanbetu1=(-m)*(-m)-4*(-n)#𝑚^2+4𝑛
hanbetu2=(-m-6)**2-4*(15-n)#4𝑛+(−𝑚−6)^2−60

solve([hanbetu1, hanbetu2], [m,n])#m=2 n=-1

グラフを書く

import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-5,8)
y1=m*x+n
y2=x**2
y3=x**2-6*x+15
plt.grid()
plt.plot(x,y1)
plt.plot(x,y2)
plt.plot(x,y3)


交点を求める

#面積を求める
x = Symbol('x')
y2=x**2
y3=x**2-6*x+15

y4=y2-y3
y4
ans=solve(y4, x)
ans

交点を求める



y1=m*x+n
y2=x**2
y3=x**2-6*x+15


y7=y2-y1
y8=y3-y1

ans1=solve(y7,x)
ans2=solve(y8,x)

定積分を求める

# 1     5/2
# 5/2   4

ans=integrate(y7, (x,1,5/2))+integrate(y8, (x,5/2,4))
ans

2.25=9/4になる。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?