1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

ヴィエトの等式

Last updated at Posted at 2018-03-12
\begin{align}
&\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2+\sqrt{2}}}{2}\cdot\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\cdot\dots\\
&=\frac{2}{\pi}\\
\\
\sin x&=2\cos\frac{x}{2}\sin\frac{x}{2}\\
&\sin\frac{x}{2}=2\cos\frac{x}{4}\sin\frac{x}{4}なので,\\
&=2\cos\frac{x}{2}\cdot2\cos\frac{x}{2^2}\sin\frac{x}{2^2}\\
両辺&をxで割って,\\
\frac{\sin x}{x}&=2^n\cos\frac{x}{2}\cos\frac{x}{2^2}\dots\dots\cos\frac{x}{2^n}\cdot\frac{\sin\frac{x}{2^n}}{\frac{x}{2^n}}\\
n\to &\inftyのとき,\frac{\sin\frac{x}{2^n}}{\frac{x}{2^n}}\to1\\
した&がって,\frac{\sin x}{x}を表す無限級数は,\\
\frac{\sin x}{x}&=\cos\frac{x}{2}\cos\frac{x}{2^2}\cos\frac{x}{2^3}\dots\dots\\
x=&\frac{\pi}{2}のとき,\\
\frac{\sin\frac{\pi}{2}}{\frac{\pi}{2}}&=\frac{2}{\pi}=\cos\frac{\pi}{4}\cos\frac{\pi}{8}\cos\frac{\pi}{16}\dots\dots\\
{\cos}^2\frac{\theta}{2}&=\frac{1+\cos\theta}{2}より,\\
0\leqq\theta&\leqq\piのとき,\cos\frac{\theta}{2}=\frac{\sqrt{2+2\cos\theta}}{2}\\
\cos\frac{\pi}{4}&=\frac{\sqrt{2}}{2}\\
\cos\frac{\pi}{8}&=\frac{\sqrt{2+\sqrt{2}}}{2}\\
\cos\frac{\pi}{16}&=\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\\
\dots\dots\\
ゆえに,&\frac{2}{\pi}=\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2+\sqrt{2}}}{2}\cdot\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\cdot\dots
\end{align}
1
1
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?