0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【今日のアブストラクト】Spectral Normalization for Generative Adversarial Networks【論文 DeepL 翻訳】

Posted at

1 日 1 回 論文の Abstract を DeepL 翻訳の力を借りて読んでいきます.

この記事は自分用のメモみたいなものです.
ほぼ DeepL 翻訳でお送りします.
間違いがあれば指摘していだだけると嬉しいです.

翻訳元
Spectral Normalization for Generative Adversarial Networks

Abstract

訳文

敵対的生成ネットワークの研究における課題の一つは, 学習の不安定性である. 本論文では, 判別器の訓練を安定化させるために, スペクトル正規化と呼ばれる新しい重み正規化手法を提案する. 我々の新しい正規化手法は計算量が軽く, 既存の実装に組み込むことが容易である. CIFAR10, STL-10, ILSVRC2012 データセットを用いてスペクトル正規化の有効性を検証し, スペクトル正規化された GANs (SN-GANs) が従来の訓練安定化手法と比較して, より良い品質の画像を生成できることを実験的に確認した.

原文

One of the challenges in the study of generative adversarial networks is the instability of its training. In this paper, we propose a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator. Our new normalization technique is computationally light and easy to incorporate into existing implementations. We tested the efficacy of spectral normalization on CIFAR10, STL-10, and ILSVRC2012 dataset, and we experimentally confirmed that spectrally normalized GANs (SN-GANs) is capable of generating images of better or equal quality relative to the previous training stabilization techniques.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?