1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【今日のアブストラクト】Representation Learning: A Review and New Perspectives【論文 ほぼ Google 翻訳 自分用】

Posted at

1 日 1 回 (努力目標) 論文の Abstract を Google 翻訳の力を借りて読んでいきます.

この記事は自分用のメモみたいなものです.
ほぼ Google 翻訳でお送りします.
間違いがあれば指摘していだだけると嬉しいです.

翻訳元
Representation Learning: A Review and New Perspectives

Abstract

訳文

機械学習アルゴリズムの成功は一般にデータ表現に依存します. これは, さまざまな表現がデータの変動のさまざまな説明要因を多かれ少なかれ絡み合わせて隠すことができるためだと仮定します. 特定のドメイン知識を使用して表現を設計できますが, 一般的な事前学習も使用できます. AIの探求は, そのような事前を実装するより強力な表現学習アルゴリズムの設計を動機付けています. この論文では, 教師なしの特徴学習と深層学習の分野における最近の研究をレビューし, 確率モデル, オートエンコーダー, 多様体学習、深層ネットワークの進歩について説明します. これにより, 適切な表現の学習, 表現の計算 (つまり推論), および表現学習, 密度推定, 多様体学習間の幾何学的接続に関する適切な目的に関する, 長期にわたる未回答の質問に動機を与えます.

原文

The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?