10
10

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Processingでシミュレーション~万有引力

Last updated at Posted at 2015-11-07

はじめに

Processingを使って万有引力をシミュレーションします。

万有引力

質量を持つ物体の間に働く力です。
物体1の位置ベクトルを$\vec{r_1}$、質量を$m_1$とします。物体2の位置ベクトルを$\vec{r_2}$、質量を$m_2$とします。
$G$は万有引力定数です。物体1が受ける力の方向は$\vec{r_2}-\vec{r_1}$です。物体2が受ける力の方向は$\vec{r_1}-\vec{r_2}$です。
$r = |\vec{r}_1 - \vec{r}_2|$です。2つの物体に働く万有引力は次の式で与えられます。

物体1が物体2から受ける万有引力

\vec{F} = G \frac{m_1 m_2}{r^2} \vec{e}_{12} \\
\vec{e}_{12} = \frac{\vec{r}_2 - \vec{r}_1}{r}

物体2が物体1から受ける万有引力

\vec{F} = G \frac{m_1 m_2}{r^2} \vec{e}_{21} \\
\vec{e}_{21} = \frac{\vec{r}_1 - \vec{r}_2}{r}

運動方程式

万有引力のみで外力のない運動方程式は以下の通りです。
質量$m_1$の物体1が$m_2$の物体2から万有引力を受けているとします。
物体1のみ記載します。物体2もほとんど同じため省略します。

\frac{d^2 \vec{r_1}}{dt^2} = G \frac{m_2}{|\vec{r_1}-\vec{r_2}|^2} \vec{e}_{12} \\

差分化

差分化
$r_{1x}$は物体1のx座標です。その他の物体、座標も同様の記号とします。

r_{1x}(t+2Δt)-2r_{1x}(t+Δt)+r_{1x}(t) = Gm_2 r^{-2} e_{x12} \\
r_{1y}(t+2Δt)-2r_{1y}(t+Δt)+r_{1y}(t) = Gm_2 r^{-2} e_{y12} \\
r_{2x}(t+2Δt)-2r_{2x}(t+Δt)+r_{2x}(t) = Gm_1 r^{-2} e_{x21} \\
r_{2y}(t+2Δt)-2r_{2y}(t+Δt)+r_{2y}(t) = Gm_1 r^{-2} e_{y21} \\
r = \sqrt{(r_{1x}(t+2Δt)-r_{2x}(t+2Δt))^2+(r_{1y}(t+2Δt)-r_{2y}(t+2Δt))^2}\\
e_{x12} = \frac{r_{2x}-r_{1x}}{r} \\
e_{y12} = \frac{r_{2y}-r_{1y}}{r} \\
e_{x21} = \frac{r_{1x}-r_{2x}}{r} \\
e_{y21} = \frac{r_{1y}-r_{2y}}{r} \\

Processingで可視化

float G = 100.0;
float m1 = 100.0;
float m2 = 100.0;
PVector[] r1; // r1[time]
PVector[] r2;

void setup() {
  size(800, 500);
  init();
  frameRate(30);  
  fill(255, 255, 255, 255);
  noStroke();
  background(0, 0, 0);
}

void draw() {
  fill(0, 20);
  rect(0, 0, width, height);
  fill(255);
  ellipse(r1[2].x, r1[2].y, 10, 10);
  ellipse(r2[2].x, r2[2].y, 10, 10);
  for (int i=0; i<4; i++) // speed up
    updateTime();
}

void init()
{
  r1 = new PVector[3];
  r2 = new PVector[3];
  float left_mgn = 100;
  float right_mgn = 100;
  float centor = height/2;

  r1[2] = new PVector(left_mgn, centor);
  r2[2] = new PVector(width-right_mgn, centor);  
  r1[1] = new PVector(r1[2].x, r1[2].y+1);
  r2[1] = new PVector(r2[2].x, r2[2].y-1);  
  r1[0] = new PVector(r1[1].x, r1[1].y+2);
  r2[0] = new PVector(r2[1].x, r2[1].y-2);
}

void updateTime()
{
  float r = r1[1].dist(r2[1]);
  float rr = pow(r,2);
  PVector e12 = PVector.mult(PVector.sub(r2[1], r1[1]), 1/r);
  PVector e21 = PVector.mult(PVector.sub(r1[1], r2[1]), 1/r);
  r1[2].x = 2*r1[1].x - r1[0].x + G*m2/rr * e12.x;
  r1[2].y = 2*r1[1].y - r1[0].y + G*m2/rr * e12.y;
  r2[2].x = 2*r2[1].x - r2[0].x + G*m1/rr * e21.x;
  r2[2].y = 2*r2[1].y - r2[0].y + G*m1/rr * e21.y;

  r1[0] = r1[1].copy();
  r2[0] = r2[1].copy();
  r1[1] = r1[2].copy();
  r2[1] = r2[2].copy();
}

IMAGE ALT TEXT HERE

10
10
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
10
10

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?