Qiita Teams that are logged in
You are not logged in to any team

Community
Service
Qiita JobsQiita ZineQiita Blog
11
Help us understand the problem. What are the problem?

More than 3 years have passed since last update.

@tobira-code

# はじめに

Pythonを使って万有引力の運動を解きます。

# 運動方程式(3体)

m_s \\
m_e \\
m_l \\


\vec{r_s} = (r_{sx}, r_{sy}, r_{sz}) \\
\vec{r_e} = (r_{ex}, r_{ey}, r_{ez}) \\
\vec{r_l} = (r_{lx}, r_{ly}, r_{lz}) \\


\vec{r_{se}} = \vec{r_e} - \vec{r_s} = - \vec{r_{es}} \\
\vec{r_{sl}} = \vec{r_l} - \vec{r_s} = - \vec{r_{ls}} \\
\vec{r_{el}} = \vec{r_l} - \vec{r_e} = - \vec{r_{le}} \\
r_{se} = | \vec{r_{se}} | = r_{es} \\
r_{sl} = | \vec{r_{sl}} | = r_{ls} \\
r_{el} = | \vec{r_{el}} | = r_{le} \\


\vec{v_s} = (v_{sx}, v_{sy}, v_{sz}) = \dot{\vec{r_s}} \\
\vec{v_e} = (v_{ex}, v_{ey}, v_{ez}) = \dot{\vec{r_e}} \\
\vec{v_l} = (v_{lx}, v_{ly}, v_{lz}) = \dot{\vec{r_l}} \\


\vec{F_s} = (F_{sx}, F_{sy}, F_{sz}) = m_s \ddot{\vec{r_s}} = m_s \dot{\vec{v_s}} \\
\vec{F_e} = (F_{ex}, F_{ey}, F_{ez}) = m_e \ddot{\vec{r_e}} = m_e \dot{\vec{v_e}} \\
\vec{F_l} = (F_{lx}, F_{ly}, F_{lz}) = m_l \ddot{\vec{r_l}} = m_l \dot{\vec{v_l}} \\


\vec{F_s} = \vec{F_{se}} + \vec{F_{sl}} \\
\vec{F_e} = \vec{F_{es}} + \vec{F_{el}} \\
\vec{F_l} = \vec{F_{ls}} + \vec{F_{le}} \\
\vec{F_{se}} = - \vec{F_{es}} = G * m_s * m_e \frac{\vec{r_{se}}}{r_{se}^3} \\
\vec{F_{sl}} = - \vec{F_{ls}} = G * m_s * m_l \frac{\vec{r_{sl}}}{r_{sl}^3} \\
\vec{F_{el}} = - \vec{F_{le}} = G * m_e * m_l \frac{\vec{r_{el}}}{r_{el}^3} \\


m_s * \ddot{\vec{r_s}} = G * m_s * m_e \frac{\vec{r_{se}}}{r_{se}^3} + G * m_s * m_l \frac{\vec{r_{sl}}}{r_{sl}^3} \\
\dot{\vec{v_s}} = \ddot{\vec{r_s}} = G * m_e \frac{\vec{r_{se}}}{r_{se}^3} + G * m_l \frac{\vec{r_{sl}}}{r_{sl}^3} \\

m_e * \ddot{\vec{r_e}} = G * m_e * m_s \frac{\vec{r_{es}}}{r_{es}^3} + G * m_e * m_l \frac{\vec{r_{el}}}{r_{el}^3} \\
\dot{\vec{v_e}} = \ddot{\vec{r_e}} = G * m_s \frac{\vec{r_{es}}}{r_{es}^3} + G * m_l \frac{\vec{r_{el}}}{r_{el}^3} \\
\dot{\vec{v_e}} = \ddot{\vec{r_e}} = - G * m_s \frac{\vec{r_{se}}}{r_{se}^3} + G * m_l \frac{\vec{r_{el}}}{r_{el}^3} \\

m_l * \ddot{\vec{r_l}} = G * m_l * m_s \frac{\vec{r_{ls}}}{r_{ls}^3} + G * m_l * m_e \frac{\vec{r_{le}}}{r_{le}^3} \\
\dot{\vec{v_l}} = \ddot{\vec{r_l}} = G * m_s \frac{\vec{r_{ls}}}{r_{ls}^3} + G * m_e \frac{\vec{r_{le}}}{r_{le}^3} \\
\dot{\vec{v_l}} = \ddot{\vec{r_l}} = - G * m_s \frac{\vec{r_{sl}}}{r_{sl}^3} - G * m_e \frac{\vec{r_{el}}}{r_{el}^3} \\


# scipy.integrate.odeの形式

\vec{y} = (\vec{r_{s}}, \vec{r_{e}}, \vec{r_{l}}, \vec{v_{s}}, \vec{v_{e}}, \vec{v_{l}}) \\
\dot{\vec{y}} = (\dot{\vec{r_{s}}}, \dot{\vec{r_{e}}}, \dot{\vec{r_{l}}}, \dot{\vec{v_{s}}}, \dot{\vec{v_{e}}}, \dot{\vec{v_{l}}}) \\
\dot{\vec{y}} = (\vec{v_{s}}, \vec{v_{e}}, \vec{v_{l}}, \dot{\vec{v_{s}}}, \dot{\vec{v_{e}}}, \dot{\vec{v_{l}}}) \\

\dot{\vec{v_{s}}} = G * m_e \frac{\vec{r_{se}}}{r_{se}^3} + G * m_l \frac{\vec{r_{sl}}}{r_{sl}^3} \\
\dot{\vec{v_{e}}} = - G * m_s \frac{\vec{r_{se}}}{r_{se}^3} + G * m_l \frac{\vec{r_{el}}}{r_{el}^3} \\
\dot{\vec{v_{l}}} = - G * m_s \frac{\vec{r_{sl}}}{r_{sl}^3} - G * m_e \frac{\vec{r_{el}}}{r_{el}^3} \\


# Python Program

test.py
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from scipy.integrate import ode

G = 6.67E-11
ms = 1.99E+30
me = 5.97E+24
ml = 7.35E+22
Gms = G*ms
Gme = G*me
Gml = G*ml
re0 = 1.50E+11
rl0 = 3.84E+08
ve0 = 2.98E+04
vl0 = 1.02E+03

# initial condition
# [0]:rsx,  [1]:rsy,  [2]:rsz,  [3]:rex,  [4]:rey,  [5]:rez, [6]:rlx,  [7]:rly,  [8]:rlz,
# [9]:vsx, [10]:vsy, [11]:vsz, [12]:vex, [13]:vey, [14]:vez,[15]:vlx, [16]:vly, [17]:vlz,
y0 = np.array([
0,    # rsx
0,    # rsy
0,    # rsz
re0,  # rex
0,    # rey
0,    # rez
re0,  # rlx
0,    # rly
rl0,  # rlz
0,    # vsx
0,    # vsy
0,    # vsz
0,    # vex
ve0,  # vey
0,    # vez
vl0,  # vlx
ve0,  # vly
0,    # vlz
])

# y
# [0]:rsx,  [1]:rsy,  [2]:rsz,  [3]:rex,  [4]:rey,  [5]:rez, [6]:rlx,  [7]:rly,  [8]:rlz,
# [9]:vsx, [10]:vsy, [11]:vsz, [12]:vex, [13]:vey, [14]:vez,[15]:vlx, [16]:vly, [17]:vlz,
# return
# [0]:rsx',  [1]:rsy',  [2]:rsz',  [3]:rex',  [4]:rey',  [5]:rez', [6]:rlx',  [7]:rly',  [8]:rlz',
# [9]:vsx', [10]:vsy', [11]:vsz', [12]:vex', [13]:vey', [14]:vez',[15]:vlx', [16]:vly', [17]:vlz',
def f(t, y):
rse = np.array([y[3]-y[0], y[4]-y[1], y[5]-y[2]]) # sun to earth
nse = np.linalg.norm(rse)
rsl = np.array([y[6]-y[0], y[7]-y[1], y[8]-y[2]]) # sun to luna
nsl = np.linalg.norm(rsl)
rel = np.array([y[6]-y[3], y[7]-y[4], y[8]-y[5]]) # earth to luna
nel = np.linalg.norm(rel)
vsdot =   Gme * rse / nse**3 + Gml * rsl / nsl**3
vedot = - Gms * rse / nse**3 + Gml * rel / nel**3
vldot = - Gms * rsl / nsl**3 - Gme * rel / nel**3
return [y[9], y[10], y[11], y[12], y[13], y[14], y[15], y[16], y[17],
vsdot[0], vsdot[1], vsdot[2],
vedot[0], vedot[1], vedot[2],
vldot[0], vldot[1], vldot[2]]

solver = ode(f)
solver.set_integrator(name="dop853")
solver.set_initial_value(y0)

dt = 60 * 60 * 24
tw = dt * 365 * 2
ts = []
rsx = []
rsy = []
rsz = []
rex = []
rey = []
rez = []
rlx = []
rly = []
rlz = []
while solver.t < tw:
solver.integrate(solver.t+dt)
m = ms + me + ml;
# center of mass
com = [1/m * (ms * solver.y[0] + me * solver.y[3] + ml * solver.y[6]),
1/m * (ms * solver.y[1] + me * solver.y[4] + ml * solver.y[7]),
1/m * (ms * solver.y[2] + me * solver.y[5] + ml * solver.y[8])]
ts += [solver.t]
rsx += [solver.y[0] - com[0]]
rsy += [solver.y[1] - com[1]]
rsz += [solver.y[2] - com[2]]
rex += [solver.y[3] - com[0]]
rey += [solver.y[4] - com[1]]
rez += [solver.y[5] - com[2]]
rlx += [solver.y[6] - com[0]]
rly += [solver.y[7] - com[1]]
rlz += [solver.y[8] - com[2]]

plt.figure(0)
plt.axes(projection='3d')
plt.plot(rsx, rsy, rsz, "r-+")
plt.plot(rex, rey, rez, "b-+")
plt.plot(rlx, rly, rlz, "g-+")
plt.show()


Why not register and get more from Qiita?
1. We will deliver articles that match you
By following users and tags, you can catch up information on technical fields that you are interested in as a whole
2. you can read useful information later efficiently
By "stocking" the articles you like, you can search right away
11
Help us understand the problem. What are the problem?