1
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Practical Guide to Wavelet Analysis in Python

Posted at

以前、wavelet解析について別の場所に書いた。質問を受けた事を機会にgithubにコードを上げると共に、ここに内容を再録する。


Torrence and Compo [1998]のwavelet解析手法と、そのツールは我々の分野でよく使われる。私もMiyama and Miyazawa [2014]をで使用している。その関連した発表をAOGS 2014でした時に、Torrence and Compo [1998] はスケールが大きいほうを過大評価するバイアスがあり、それに関する論文(Liu et al. 2007と関連するweb pageを教えていただいた。

下の図はLiu et al. 2007のFig.2に対応する、1,8,32,128,365日のsineカーブの単純な重ね合わせ(a)のシグナルにwavelet解析をかけたものである。Torrence and Compo [1998] の手法(b,c)ではスケールが大きい(長周期)のほうがシグナルが大きいと解析されてしまう。一方、Liu et al. [2007]はスペクトルをスケールで割ることを提案しており、これであれば(d,e)、各周期が同じくらいの強さであるという合理的な結果が出る。

wavelet_test_sine.png

上記の図を作るwavelet解析のツールをpythonに翻訳し、Jupyter Notebookにしたものはこちら。

さらに、NINO SST3のwavelet解析した(Liu et al. 2007のFig 4に対応)物をJupyter Notebookしたものはこちら。

nino3_liu.png

1
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?