最近話題のChatGPTを利用してChatbotを作ってみようと思いました。
今回は、Dockerで立ち上げた際のメモとしてこの記事を残そうと思います。
LlamaIndexやStreamlitは初めて触るので、記述が甘い点等あるかと思います。
利用したフレームワーク等について
今回利用している主なフレームワーク等です。こちらは解説している方がたくさんいらっしゃるので説明を省かせていただきます。
Streamlit
https://streamlit.io/
LlamaIndex
https://www.llamaindex.ai/
LangChain
https://www.langchain.com/
Faiss
https://ai.meta.com/tools/faiss/
ソースコード
実行手順
- ログインユーザー、パスワードはconfig.yamlで設定しています。
詳しい設定手順は、こちらの記事で確認できます。
https://blog.streamlit.io/streamlit-authenticator-part-1-adding-an-authentication-component-to-your-app/ - .envにChatGPTで取得したAPIKEYを記載します。(利用料金がかかります。)
- コマンドプロンプトで
docker compose up -d
を叩くとコンテナが立ち上がります。
requirement.txt
streamlit==1.25.0
langchain==0.0.303
openai==1.1.0
duckduckgo-search==3.8.5
anthropic==0.3.10
llama-index==0.8.68
pypdf==3.9.0
faiss-cpu==1.7.4
html2text==2020.1.16
streamlit-authenticator==0.2.2
extra_streamlit_components==0.1.56
FROM python:3.9
WORKDIR /app
COPY . .
RUN pip3 install --upgrade pip && \
pip3 install --no-cache-dir -r requirements.txt
EXPOSE 8501
docker-compose.yml
version: '3.8'
services:
app:
restart: always
build:
context: .
dockerfile: Dockerfile
ports:
- 8501:8501
volumes:
- .:/app
env_file:
- .env
command: streamlit run app.py
confing.yml
cookie:
expiry_days: 10
key: some_signature_keys
name: some_cookie_name
credentials:
usernames:
test:
email: test@example.co.jp
name: test user
password: xxxxxxxxx
preauthorized:
emails:
- test@example.co.jp
.env
OPENAI_API_KEY=「chatGPTのAPIKEY」
common.py
import extra_streamlit_components as stx
import streamlit as st
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("__name__")
logger.debug("調査用ログ")
#ログインの確認
def check_login():
if 'authentication_status' not in st.session_state:
st.session_state['authentication_status'] = None
if st.session_state["authentication_status"] is None or False:
st.warning("**ログインしてください**")
st.stop()
app.py
import streamlit as st
import os
import pickle
import faiss
import logging
from multiprocessing import Lock
from multiprocessing.managers import BaseManager
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index import VectorStoreIndex, Document,Prompt, SimpleDirectoryReader, ServiceContext, StorageContext, load_index_from_storage
from llama_index.chat_engine import CondenseQuestionChatEngine;
from llama_index.node_parser import SimpleNodeParser
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
from llama_index.constants import DEFAULT_CHUNK_OVERLAP
from llama_index.response_synthesizers import get_response_synthesizer
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.graph_stores import SimpleGraphStore
from llama_index.storage.docstore import SimpleDocumentStore
from llama_index.storage.index_store import SimpleIndexStore
import tiktoken
import streamlit_authenticator as stauth
import yaml
from logging import getLogger, StreamHandler, Formatter
index_name = "./data/storage"
pkl_name = "./data/stored_documents.pkl"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("__name__")
logger.debug("調査用ログ")
def initialize_index():
logger.info("initialize_index start")
text_splitter = TokenTextSplitter(separator="。", chunk_size=1500
, chunk_overlap=DEFAULT_CHUNK_OVERLAP
, tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode)
node_parser = SimpleNodeParser(text_splitter=text_splitter)
d = 1536
faiss_index = faiss.IndexFlatL2(d)
llama_debug_handler = LlamaDebugHandler()
callback_manager = CallbackManager([llama_debug_handler])
service_context = ServiceContext.from_defaults(node_parser=node_parser,callback_manager=callback_manager)
lock = Lock()
with lock:
if os.path.exists(index_name):
vectorStorePath = index_name + "/" + "default__vector_store.json"
storage_context = StorageContext.from_defaults(
docstore=SimpleDocumentStore.from_persist_dir(persist_dir=index_name),
graph_store=SimpleGraphStore.from_persist_dir(persist_dir=index_name),
vector_store=FaissVectorStore.from_persist_path(persist_path=vectorStorePath),
index_store=SimpleIndexStore.from_persist_dir(persist_dir=index_name),
)
st.session_state.index = load_index_from_storage(storage_context=storage_context,service_context=service_context)
response_synthesizer = get_response_synthesizer(response_mode='refine')
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer,service_context=service_context)
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=st.session_state.query_engine,
verbose=True
)
else:
documents = SimpleDirectoryReader("./documents").load_data()
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
st.session_state.index = VectorStoreIndex.from_documents(documents, storage_context=storage_context,service_context=service_context)
st.session_state.index.storage_context.persist(persist_dir=index_name)
response_synthesizer = get_response_synthesizer(response_mode='refine')
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer,service_context=service_context)
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=st.session_state.query_engine,
verbose=True
)
if os.path.exists(pkl_name):
with open(pkl_name, "rb") as f:
st.session_state.stored_docs = pickle.load(f)
else:
st.session_state.stored_docs=list()
with open('config.yaml') as file:
config = yaml.load(file, Loader=yaml.SafeLoader)
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized'],
)
name, authentication_status, username = authenticator.login('Login', 'main')
if 'authentication_status' not in st.session_state:
st.session_state['authentication_status'] = None
if st.session_state["authentication_status"]:
authenticator.logout('Logout', 'main')
st.write(f'ログインに成功しました')
initialize_index()
elif st.session_state["authentication_status"] is False:
st.error('ユーザ名またはパスワードが間違っています')
elif st.session_state["authentication_status"] is None:
st.warning('ユーザ名やパスワードを入力してください')
pages/Chatbot.py
import streamlit as st
import logging
from llama_index import Prompt
import common
index_name = "./data/storage"
pkl_name = "./data/stored_documents.pkl"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("__name__")
logger.debug("調査用ログ")
common.check_login()
st.title("💬 Chatbot")
if st.button("リセット",use_container_width=True):
st.session_state.chat_engine.reset()
st.session_state.messages = [{"role": "assistant", "content": "質問をどうぞ"}]
st.experimental_rerun()
logger.info("reset")
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "質問をどうぞ"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
response = st.session_state.chat_engine.chat(prompt)
msg = str(response)
st.session_state.messages.append({"role": "assistant", "content": msg})
st.chat_message("assistant").write(msg)
pages/Impotfile.py
import openai
import streamlit as st
import os
import pickle
import logging
from llama_index import SimpleDirectoryReader
from llama_index.chat_engine import CondenseQuestionChatEngine;
from llama_index.response_synthesizers import get_response_synthesizer
from llama_index import Prompt, SimpleDirectoryReader
from logging import getLogger, StreamHandler, Formatter
import common
index_name = "./data/storage"
pkl_name = "./data/stored_documents.pkl"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("__name__")
logger.debug("調査用ログ")
common.check_login()
if "file_uploader_key" not in st.session_state:
st.session_state["file_uploader_key"] = 0
st.title("📝 ImportFile")
uploaded_file = st.file_uploader("Upload an article", type=("txt", "md","pdf"),key=st.session_state["file_uploader_key"])
if st.button("import",use_container_width=True):
filepath = None
try:
filepath = os.path.join('documents', os.path.basename( uploaded_file.name))
logger.info(filepath)
with open(filepath, 'wb') as f:
f.write(uploaded_file.getvalue())
f.close()
document = SimpleDirectoryReader(input_files=[filepath]).load_data()[0]
logger.info(document)
st.session_state.stored_docs.append(uploaded_file.name)
logger.info(st.session_state.stored_docs)
st.session_state.index.insert(document=document)
st.session_state.index.storage_context.persist(persist_dir=index_name)
response_synthesizer = get_response_synthesizer(response_mode='refine')
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer)
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=st.session_state.query_engine,
verbose=True
)
with open(pkl_name, "wb") as f:
print("pickle")
pickle.dump(st.session_state.stored_docs, f)
st.session_state["file_uploader_key"] += 1
st.experimental_rerun()
except Exception as e:
# cleanup temp file
logger.error(e)
if filepath is not None and os.path.exists(filepath):
os.remove(filepath)
st.subheader("Import File List")
if "stored_docs" in st.session_state:
logger.info(st.session_state.stored_docs)
for docname in st.session_state.stored_docs:
st.write(docname)
demoの様子
http://localhost:8501/
にアクセスすると確認できます。
ImportFileでファイルを取り込み、Chatbotで質問することで、取り込んだファイルの内容から回答してくれます。
感想
プロンプトや設定を細かくするとより、精度の高い回答になりそうですね。
まだまだ、知識が浅いのでいろいろ記事を見ていこうと思います。