2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

Matplotlibで、L1距離の可視化

Posted at

散布図を作成した時に、L1距離をプロットする方法がなかったので自作した

import numpy as np
import matplotlib.pyplot as plt

x_hoge = np.arange(10)
y_hoge = np.arange(10)

plt.scatter(x_hoge, y_hoge)

#plt.plot([x_start,x_end],[y_start,y_end])
for i in range(x_hoge.shape[0] - 1):
  plt.plot([x_hoge[i], x_hoge[i + 1]], [y_hoge[i], y_hoge[i]], c="red")

for i in range(y_hoge.shape[0] - 1):
  plt.plot([x_hoge[i + 1], x_hoge[i + 1]], [y_hoge[i], y_hoge[i + 1]],c="blue")

出力画像

ダウンロード (52).png

乱数にしたバージョン

x_hoge = np.random.rand(10)
y_hoge = np.random.rand(10)

plt.scatter(x_hoge, y_hoge)

#plt.plot([x_start,x_end],[y_start,y_end])
for i in range(x_hoge.shape[0] - 1):
  plt.plot([x_hoge[i], x_hoge[i + 1]], [y_hoge[i], y_hoge[i]], c="red")

for i in range(y_hoge.shape[0] - 1):
  plt.plot([x_hoge[i + 1], x_hoge[i + 1]], [y_hoge[i], y_hoge[i + 1]], c="blue")

出力画像

ダウンロード (53).png


3Dplotバージョン

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation



#データの作成
x_hoge = np.random.rand(10)
y_hoge = np.random.rand(10)
z_hoge = np.random.rand(10)


# figureを作成
fig = plt.figure(figsize = (8, 8))
ax = fig.add_subplot(111, projection='3d')

#figureの設定
ax.view_init(elev=30, azim=30)
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_zlim([0, 1])
ax.tick_params(bottom=False, left=False, right=False, top=False)
ax.tick_params(labelbottom=False, labelleft=False, labelright=False, labeltop=False)


ax.scatter(x_hoge, y_hoge, z_hoge, color = "red",edgecolors='black')
#zx.plot([x_start, x_end], [y_start, y_end], [z_start, z_end])
for i in range(x_hoge.shape[0] - 1):
  ax.plot([x_hoge[i], x_hoge[i + 1]], [y_hoge[i], y_hoge[i]], [z_hoge[i] , z_hoge[i]], c="red")

for i in range(y_hoge.shape[0] - 1):
  ax.plot([x_hoge[i + 1], x_hoge[i + 1]], [y_hoge[i], y_hoge[i + 1]], [z_hoge[i] , z_hoge[i]], c="blue")

for i in range(y_hoge.shape[0] - 1):
  ax.plot([x_hoge[i + 1], x_hoge[i + 1]], [y_hoge[i + 1], y_hoge[i + 1]], [z_hoge[i] , z_hoge[i + 1]], c="green")

plt.show()

出力画像

ダウンロード (54).png

散布図を着色した場合

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation


#データの作成
x_hoge = np.random.rand(10)
y_hoge = np.random.rand(10)
z_hoge = np.random.rand(10)

# figureを作成
fig = plt.figure(figsize = (8, 8))
ax = fig.add_subplot(111, projection='3d')

#figureの設定
ax.view_init(elev=30, azim=30)
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_zlim([0, 1])
ax.tick_params(bottom=False, left=False, right=False, top=False)
ax.tick_params(labelbottom=False, labelleft=False, labelright=False, labeltop=False)

#カラーコードを作成
color_list = []
for i in range(x_hoge.shape[0]):
  R_16  = '{:02x}'.format(int(x_hoge[i] * 255), 'x')
  G_16  = '{:02x}'.format(int(y_hoge[i] * 255), 'x')
  B_16  = '{:02x}'.format(int(z_hoge[i] * 255), 'x')
  color_str ="#" + R_16 + G_16 + B_16
  color_list.append(color_str)

#描画
ax.scatter(x_hoge, y_hoge, z_hoge, color = color_list, edgecolors="black", s=200 ,alpha=1)


#zx.plot([x_start, x_end], [y_start, y_end], [z_start, z_end])
for i in range(x_hoge.shape[0] - 1):
  ax.plot([x_hoge[i], x_hoge[i + 1]], [y_hoge[i], y_hoge[i]], [z_hoge[i] , z_hoge[i]], c="red")

for i in range(y_hoge.shape[0] - 1):
  ax.plot([x_hoge[i + 1], x_hoge[i + 1]], [y_hoge[i], y_hoge[i + 1]], [z_hoge[i] , z_hoge[i]], c="blue")

for i in range(y_hoge.shape[0] - 1):
  ax.plot([x_hoge[i + 1], x_hoge[i + 1]], [y_hoge[i + 1], y_hoge[i + 1]], [z_hoge[i] , z_hoge[i + 1]], c="green")

plt.show()


### 出力画像
ダウンロード (55).png

2
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?