9
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

自然言語処理100本ノック 第4章 形態素解析(後半)

Posted at

第4章の後半の問題を解いた記録。
対象とするファイルはwebページにもある通り、neko.txtとする。

夏目漱石の小説『吾輩は猫である』の文章(neko.txt)をMeCabを使って形態素解析し,その結果をneko.txt.mecabというファイルに保存せよ.このファイルを用いて,以下の問に対応するプログラムを実装せよ.
なお,問題37, 38, 39はmatplotlibもしくはGnuplotを用いるとよい.

35. 名詞の連接

名詞の連接(連続して出現する名詞)を最長一致で抽出せよ.

# -*- coding: utf-8 -
__author__ = 'todoroki'

import problem30

def extract_seqs(sentences):
    seqs = []
    seq = []
    for sentence in sentences:
        for morpheme in sentence:
            if morpheme['pos'] == "名詞":
                seq.append(morpheme['surface'])
            else:
                if len(seq) > 1:
                    seqs.append(seq)
                seq = []
    return seqs

if __name__ == "__main__":
    inputfile = 'neko.txt.mecab'
    outputfile = 'neko.mecab_sequences.txt'
    f = open(inputfile, "r")
    g = open(outputfile, "w")
    sentences = problem30.mecab_reader(f)
    sequences = extract_seqs(sentences)
    for sequence in sequences:
        # print "".join(sequence)
        g.write("".join(sequence) + '\n')
    f.close()
    g.close()

36. 単語の出現頻度

文章中に出現する単語とその出現頻度を求め,出現頻度の高い順に並べよ.

# -*- coding: utf-8 -
__author__ = 'todoroki'

import problem30
from collections import Counter

def count_words(sentences):
    words = []
    for sentence in sentences:
        for morpheme in sentence:
            words.append(morpheme['surface'])
    return Counter(words)

if __name__ == "__main__":
    inputfile = "neko.txt.mecab"
    outputfile = "neko.mecab_words.txt"
    f = open(inputfile, 'r')
    g = open(outputfile, 'w')
    sentences = problem30.mecab_reader(f)
    counter = count_words(sentences)
    for word, count in counter.most_common():
        # print word, count
        g.write("%s %s\n" % (word, count))
    f.close()
    g.close()

37. 頻度上位10語

出現頻度が高い10語とその出現頻度をグラフ(例えば棒グラフなど)で表示せよ.

# -*- coding: utf-8 -
__author__ = 'todoroki'

import problem30
import problem36
import matplotlib.pyplot as plt

def plot_words(words, counts, file):
    from matplotlib.font_manager import FontProperties
    fp = FontProperties(fname='/usr/local/Cellar/ricty/3.2.4/share/fonts/Ricty-Regular.ttf')
    plt.bar(range(10), counts, align='center')
    plt.xticks(range(0, 10), words, fontproperties=fp)
    plt.savefig(file)

if __name__ == '__main__':
    inputfile = 'neko.txt.mecab'
    outputfile = 'neko.mecab_words.png'
    f = open(inputfile, 'r')
    words = []
    counts = []
    sentences = problem30.mecab_reader(f)
    counter = problem36.count_words(sentences)
    for word, count in counter.most_common(10):
        # print word, count
        words.append(word.decode('utf8'))
        counts.append(count)
    plot_words(words, counts, outputfile)
    f.close()

neko.mecab_words.png

38. ヒストグラム

単語の出現頻度のヒストグラム(横軸に出現頻度,縦軸に出現頻度をとる単語の種類数を棒グラフで表したもの)を描け.

# -*- coding: utf-8 -
__author__ = 'todoroki'

import problem30
import problem36
import pandas as pd

def plot_words_hist(freq, file):
    plot = freq.hist()
    fig = plot.get_figure()
    fig.savefig(file)

if __name__ == '__main__':
    inputfile = 'neko.txt.mecab'
    outputfile = 'neko.mecab_words_hist.png'
    f = open(inputfile, 'r')
    words = []
    counts = []
    sentences = problem30.mecab_reader(f)
    counter = problem36.count_words(sentences)
    freq = pd.Series(list(counter.values()), index=list(counter.keys()))
    plot_words_hist(freq, outputfile)

neko.mecab_words_hist.png

39. Zipfの法則

単語の出現頻度順位を横軸,その出現頻度を縦軸として,両対数グラフをプロットせよ.

# -*- coding: utf-8 -
__author__ = 'todoroki'

import problem30
import problem36
import matplotlib.pyplot as plt


def plot_words_hist_log(counter, file):
    from matplotlib.font_manager import FontProperties
    fp = FontProperties(fname='/usr/local/Cellar/ricty/3.2.4/share/fonts/Ricty-Regular.ttf')
    plt.figure()
    plt.xscale('log')
    plt.yscale('log')
    plt.plot(sorted(list(counter.values()), reverse=True), range(1, len(list(counter))+1))
    plt.savefig(file)


if __name__ == '__main__':
    inputfile = 'neko.txt.mecab'
    outputfile = 'neko.mecab_words_hist_log.png'
    f = open(inputfile, 'r')
    words = []
    counts = []
    sentences = problem30.mecab_reader(f)
    counter = problem36.count_words(sentences)
    plot_words_hist_log(counter, outputfile)
    f.close()

neko.mecab_words_hist_log.png

9
6
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
9
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?