0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

うぇと

Posted at

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

ファイルの読み込み

file_path = 'path_to_your_local_file/合成用資料_1.xlsx' # ローカルファイルのパスに置き換えてください
data = pd.read_excel(file_path)

日付をdatetime型に変換

data['TDATE'] = pd.to_datetime(data['TDATE'], format='%Y%m%d')

1年ごとの期間設定

years = data['TDATE'].dt.year.unique()

ファクターポートフォリオの構築と評価

factor_names = ['EST_SENTIMENT', 'EST_LIQUIDITY', 'INCM_NORM']
results = {year: {factor: [] for factor in factor_names} for year in years}

for year in years:
year_data = data[data['TDATE'].dt.year == year]
for factor in factor_names:
factor_portfolio = year_data.sort_values(by=factor, ascending=False).iloc[:int(len(year_data) * 0.1)]
cumulative_return = (factor_portfolio['ROR1MF'] / 100 + 1).prod() - 1
average_return = factor_portfolio['ROR1MF'].mean()
risk = factor_portfolio['ROR1MF'].std()
sharpe_ratio = average_return / risk if risk != 0 else np.nan

    results[year][factor] = {
        'Cumulative Return': cumulative_return,
        'Average Return': average_return,
        'Risk': risk,
        'Sharpe Ratio': sharpe_ratio
    }

ウェイトの計算

weights = {}
for year in years:
weights[year] = {}
total_sharpe = sum(results[year][factor]['Sharpe Ratio'] for factor in factor_names if results[year][factor]['Sharpe Ratio'] > 0)
for factor in factor_names:
sharpe_ratio = results[year][factor]['Sharpe Ratio']
weights[year][factor] = sharpe_ratio / total_sharpe if total_sharpe > 0 else 1 / len(factor_names)

ウェイトを適用した戦略合成の計算

strategy_results = []
for year in years:
year_data = data[data['TDATE'].dt.year == year]
year_strategy_return = np.zeros(len(year_data))
for factor in factor_names:
weight = weights[year][factor]
normalized_factor = (year_data[factor] - year_data[factor].mean()) / year_data[factor].std()
year_strategy_return += weight * normalized_factor
strategy_results.append({
'Year': year,
'Strategy Return': year_strategy_return.mean()
})

結果のデータフレーム化

strategy_results_df = pd.DataFrame(strategy_results)

プロットの準備

years = strategy_results_df['Year']
strategy_returns = strategy_results_df['Strategy Return']

比較のための正規化した単純合成

simple_composite = (data['EST_SENTIMENT'] + data['EST_LIQUIDITY'] + data['INCM_NORM']) / 3
simple_composite_return = []
for year in years:
year_data = data[data['TDATE'].dt.year == year]
simple_composite_return.append(simple_composite[year_data.index].mean())

プロット

plt.figure(figsize=(12, 8))
plt.plot(years, simple_composite_return, label='Simple Composite', marker='o')
plt.plot(years, strategy_returns, label='Strategy Composite', marker='x')
plt.xlabel('Year')
plt.ylabel('Average Return')
plt.title('Simple Composite vs Strategy Composite Returns')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?