0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

mm

Posted at

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

ファイルの読み込み

file_path = 'path_to_your_local_file/合成用資料_1.xlsx' # ローカルファイルのパスに置き換えてください
data = pd.read_excel(file_path)

期間定義

periods = {
'2014-2015': ('2014-04-30', '2015-12-31'),
'2016-2019': ('2016-01-01', '2019-12-31'),
'2020-2021': ('2020-01-01', '2021-12-31'),
'2022-2024': ('2022-01-01', '2024-04-30')
}

ファクターポートフォリオの構築と評価

factor_names = ['BPR', 'EST_SENTIMENT', 'EST_LIQUIDITY', 'INCM_NORM', 'ROA', 'Sales Growth', 'Price Momentum']
results = {factor: [] for factor in factor_names}

for period, (start, end) in periods.items():
period_data = data[(data['TDATE'] >= pd.to_datetime(start)) & (data['TDATE'] <= pd.to_datetime(end))]

for factor in factor_names:
    factor_portfolio = period_data.sort_values(by=factor, ascending=False).iloc[:int(len(period_data) * 0.1)]
    cumulative_return = (factor_portfolio['ROR1MF'] / 100 + 1).prod() - 1
    average_return = factor_portfolio['ROR1MF'].mean()
    risk = factor_portfolio['ROR1MF'].std()
    sharpe_ratio = average_return / risk if risk != 0 else np.nan
    
    results[factor].append({
        'Period': period,
        'Cumulative Return': cumulative_return,
        'Average Return': average_return,
        'Risk': risk,
        'Sharpe Ratio': sharpe_ratio
    })

結果の集計と視覚化

results_df = pd.DataFrame([(factor, period, res['Cumulative Return'], res['Average Return'], res['Risk'], res['Sharpe Ratio'])
for factor, values in results.items()
for period, res in zip(periods.keys(), values)],
columns=['Factor', 'Period', 'Cumulative Return', 'Average Return', 'Risk', 'Sharpe Ratio'])

各指標の棒グラフ作成

for metric in ['Cumulative Return', 'Average Return', 'Risk', 'Sharpe Ratio']:
fig, ax = plt.subplots(figsize=(12, 8))
for factor in factor_names:
subset = results_df[results_df['Factor'] == factor]
ax.bar(subset['Period'], subset[metric], label=factor)

ax.set_title(f'{metric} by Factor and Period')
ax.set_xlabel('Period')
ax.set_ylabel(metric)
ax.legend(title='Factor')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?