0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

標準正規分布の期待値、分散

Last updated at Posted at 2022-05-20

前提確認

・確率密度関数から期待値、分散を導出することを目的とする
・その他の知識に詳しくは触れない

確率密度関数

X ~ N(0,1)に従うとき、確率変数Xの確率密度関数は、

f_X(x)=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})\qquad(-∞<x<∞)

である。

期待値導出

\begin{eqnarray}
E[X] &=& \int_{-∞}^{∞}xf_X(x)dx \\
&=& \int_{-∞}^{∞}x\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})dx \\
&=& 0
\end{eqnarray}

奇関数なので期待値は0

分散導出

V[X] = E[X^2] - {E[X]}^2
\begin{eqnarray}
E[X^2] &=&  \int_{-∞}^{∞}x^2f_X(x)dx \\
&=& \int_{-∞}^{∞}x^2\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})dx \\
\end{eqnarray}

偶関数なので、

\begin{eqnarray} 
E[X^2] &=& 2\int_{0}^{∞}x^2\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})dx \\
\end{eqnarray}

ここで、

t = x^2/2\qquad(0<t<∞)

と置換する。

\begin{eqnarray}
E[X^2] &=& \frac{2}{\sqrt{\pi}}\int_{0}^{∞}t^{1/2}e^{-t}dt \\
\end{eqnarray}

ここで、ガンマ関数の定義、性質は、

\begin{eqnarray}
\Gamma(s)&=&\int_{0}^{\infty}t^{s-1}e^{-t}dt\qquad(s>0), \\
\Gamma(s)&=& (s-1)\Gamma(s-1) \\
 \Gamma(s)&=& (s-1)!,\\
\Gamma(1/2) &=& \sqrt{\pi}
\end{eqnarray}

であるので、

\begin{eqnarray}
E[X^2] &=& \frac{2}{\sqrt{\pi}}\Gamma(3/2) \\
&=& \frac{2}{\sqrt{\pi}}*1/2* \Gamma(1/2) \\
&=& \frac{2}{\sqrt{\pi}}*1/2* \sqrt{\pi} \\
&=& 1
\end{eqnarray}

よって、

\begin{eqnarray}
V[X] &=& E[X^2] - {E[X]}^2 \\
&=& 1-0^2 \\
&=& 1
\end{eqnarray}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?