はじめに
データ圧縮, データサイズを可逆にロスレス圧縮する場合, 理論上はデータの情報量より小さくすることはできません. しかし, 情報量は変化しないにしても, ある種の変換を施した場合, 圧縮率を改善できることがあるので利用できないかと思いつきました.
ブロックソート
ブロックソート(Wikipedia), 同じシンボルが連続するように並び替え, 後段の圧縮アルゴリズムの効率がよくなることを狙った処理です.
以下の説明は, Wikipediaの複製です.
エンコード
ここでは長さ5の文字列cacao
を入力と想定します. この文字列を巡回シフトして5個の文字列を作成します. 5個の文字列をソートした結果, 最右列の文字列と入力が移動した行番号を出力とします. 巡回シフトの性質として同じ文字が連続するようになります.
デコード
デコード時の入力は最右列と元の文字列のあった行番号です. 表の最左列もソート結果なので既知です.
この状態から巡回シフトと整列を行います. 整列後は, 巡回シフトの性質から最右列は入力と同じになります. これを繰り返すと, 元の文字列を復号することができます.
整列を繰り返す代わりに, 最右列を行番号とペアで整列すると, 元の文字列のあった行番号(この例では2
)から始めて行番号をたどって復号することができます.
結果
The Canterbury CorpusとSilesia Compression Corpusを使って実験してみます.
32KiBをチャンクとして変換し, zlibやzstandardを組み合わせてみる. (圧縮前サイズ)/(圧縮後サイズ)を表にしている.
ファイル名 | zlib | zlib + blocksort | zstd | zstd + blocksort |
---|---|---|---|---|
alice29.txt | 2.795548 | 2.424270 | 2.549391 | 2.308156 |
asyoulik.txt | 2.560055 | 2.290139 | 2.296357 | 2.174379 |
cp.html | 3.090441 | 3.090441 | 2.789456 | 2.789456 |
fields.c | 3.571429 | 3.571429 | 3.135546 | 3.135546 |
grammar.lsp | 3.045008 | 3.045008 | 2.783096 | 2.783096 |
kennedy.xls | 5.047963 | 11.444779 | 8.923954 | 10.155867 |
lcet10.txt | 2.945081 | 2.437327 | 2.692115 | 2.309000 |
plrabn12.txt | 2.467779 | 2.190456 | 2.211985 | 2.124973 |
ptt5 | 9.089099 | 8.542921 | 9.933341 | 8.806795 |
sum | 2.943803 | 2.424089 | 2.807636 | 2.162529 |
xargs.1 | 2.434908 | 2.434908 | 2.272581 | 2.272581 |
dickens | 2.632595 | 2.263508 | 2.391619 | 2.173286 |
mozilla | 2.683228 | 2.357722 | 2.547212 | 2.148319 |
mr | 2.712384 | 3.121952 | 2.608935 | 3.089074 |
nci | 10.484836 | 9.120468 | 11.778834 | 9.088466 |
ooffice | 1.986312 | 1.745986 | 1.706059 | 1.578862 |
osdb | 2.729424 | 1.798514 | 2.704068 | 1.517923 |
reymont | 3.561344 | 3.11506 | 3.085404 | 2.888798 |
samba | 3.963455 | 3.248020 | 3.925215 | 2.958997 |
sao | 1.360131 | 1.337194 | 1.159975 | 1.275935 |
webster | 3.394374 | 2.892274 | 3.034564 | 2.741393 |
xml | 7.769336 | 5.970239 | 7.667749 | 5.531658 |
x-ray | 1.401832 | 1.622102 | 1.251462 | 1.586382 |
まとめ
ほとんど効果がないが, kennedy.xls
, mr
やx-ray
のように効果的なパターンがあるよう.
実装
Raspberry Pi 4 でも動作確認できたのでアップしておきます.
Block Sort
#ifndef INC_BLKSORT_H_
#define INC_BLKSORT_H_
/**
@file blksort.h
USAGE:
Put '#define BLKSORT_IMPLEMENTATION' before including this file to create the implementation.
*/
#include <cstdint>
#if defined(_MSC_VER)
# define BLKSORT_RESTRICT __restrict
#elif defined(__GNUC__) || defined(__clang__)
# define BLKSORT_RESTRICT __restrict
#else
# define BLKSORT_RESTRICT
#endif
#ifndef BLKSORT_MALLOC
# if defined(_MSC_VER)
# include <malloc.h>
# define BLKSORT_MALLOC(a, x) _aligned_malloc(x, a)
# elif defined(__GNUC__) || defined(__clang__)
# include <cstdlib>
# define BLKSORT_MALLOC(a, x) std::aligned_alloc(a, x)
# else
# error
# endif
#endif
#ifndef BLKSORT_FREE
# if defined(_MSC_VER)
# include <malloc.h>
# define BLKSORT_FREE(x) _aligned_free(x)
# elif defined(__GNUC__) || defined(__clang__)
# include <cstdlib>
# define BLKSORT_FREE(x) std::free(x)
# else
# error
# endif
#endif
#ifndef BLKSORT_ALIGN
# if defined(_MSC_VER)
# define BLKSORT_ALIGN(x) __declspec(align(x))
# elif defined(__GNUC__) || defined(__clang__)
# define BLKSORT_ALIGN(x) __attribute__((aligned(x)))
# else
# error
# endif
#endif
#define BLOCKSORT_DEBUG (0)
#define BLOCKSORT_PERF (1)
#define BLOCKSORT_MTF (0)
namespace blksort
{
struct Item
{
uint8_t* str_;
uint16_t id_;
uint16_t head2() const
{
return (static_cast<uint16_t>(str_[1]) << 8) | static_cast<uint16_t>(str_[0]);
}
};
int32_t strcmp(const uint8_t* BLKSORT_RESTRICT x0, const uint8_t* BLKSORT_RESTRICT x1, uint32_t depth);
void insertionsort(uint32_t size, Item* BLKSORT_RESTRICT v, uint32_t depth);
void heapsort(uint32_t n, Item* BLKSORT_RESTRICT v, uint32_t depth);
void sort(uint32_t size, Item* BLKSORT_RESTRICT data, uint32_t depth);
void counting_sort(uint32_t size, uint16_t* BLKSORT_RESTRICT dst, const uint8_t* BLKSORT_RESTRICT key, const uint16_t* BLKSORT_RESTRICT value);
class BlkSort
{
public:
inline static constexpr uint32_t Align = 16;
inline static constexpr uint32_t BlockSize = 1024 * 32;
inline static constexpr uint32_t BlockShift = 15;
inline static constexpr uint32_t BlockMask = BlockSize - 1;
inline static constexpr uint32_t EncodedSize = BlockSize + 2;
BlkSort();
~BlkSort();
static uint32_t encodeBound(uint32_t size);
static uint32_t decodeBound(uint32_t size);
void encode(uint32_t size, uint8_t* BLKSORT_RESTRICT dst, const uint8_t* BLKSORT_RESTRICT data);
void decode(uint32_t size, uint8_t* BLKSORT_RESTRICT dst, uint8_t* BLKSORT_RESTRICT data);
private:
BlkSort(const BlkSort&) = delete;
BlkSort& operator=(const BlkSort&) = delete;
void encode_internal(uint8_t* BLKSORT_RESTRICT dst, const uint8_t* BLKSORT_RESTRICT data);
void decode_internal(uint8_t* BLKSORT_RESTRICT dst, uint8_t* BLKSORT_RESTRICT data);
void mtf_init(uint8_t* BLKSORT_RESTRICT id);
uint8_t mtf_find(const uint8_t* BLKSORT_RESTRICT table, uint8_t x);
void mtf_move_to_front_one(uint8_t* BLKSORT_RESTRICT table, uint8_t x);
void mtf_encode(uint32_t size, uint8_t* BLKSORT_RESTRICT data);
void mtf_decode(uint32_t size, uint8_t* BLKSORT_RESTRICT data);
const uint32_t size_;
uint8_t* buffer_;
};
} // namespace blksort
#endif // INC_BLKSORT_H_
#ifdef BLKSORT_IMPLEMENTATION
#include <cassert>
#include <cstring>
#include <algorithm>
#ifdef __AVX__
# define BLKSORT_AVX (1)
# include <immintrin.h>
#endif
#ifdef __ARM_NEON
# define BLKSORT_NEON (1)
# include <arm_neon.h>
#endif
#if BLOCKSORT_PERF
# include <chrono>
#endif
#if BLOCKSORT_PERF
double encode_setup = 0.0;
double encode_sort = 0.0;
double encode_finalize = 0.0;
double decode_setup = 0.0;
double decode_sort = 0.0;
double decode_finalize = 0.0;
double mtf_encode_setup = 0.0;
double mtf_encode_main = 0.0;
double mtf_decode_setup = 0.0;
double mtf_decode_main = 0.0;
#endif
namespace blksort
{
namespace
{
#if BLOCKSORT_DEBUG
void print(uint32_t size, const uint8_t* data)
{
for(uint32_t i = 0; i < size; ++i) {
printf("%02X ", data[i]);
}
printf("\n");
}
#endif
#if 0
uint32_t bitscan(uint32_t mask)
{
unsigned long index = 0;
return 0 == _BitScanForward(&index, mask) ? 0x0U : index;
}
#endif
Item median(uint32_t size, const Item* data)
{
uint32_t m = size >> 2;
uint8_t x0 = data[m].str_[0];
uint32_t m2 = m + m;
uint8_t x1 = data[m2].str_[0];
uint32_t m3 = m + m2;
uint8_t x2 = data[m3].str_[0];
if(x0 < x1) {
return x1 < x2 ? data[m2] : (x0 < x2 ? data[m3] : data[m]);
} else {
return x0 < x2 ? data[m] : (x1 < x2 ? data[m3] : data[m2]);
}
}
bool less(const uint8_t* x0, const uint8_t* x1, uint32_t depth)
{
assert((depth & 15) == 0);
#if 0
for(uint32_t d=0; d<depth; d+=16){
__m128i m0 = _mm_loadu_si128((const __m128i*)&x0[d]);
__m128i m1 = _mm_loadu_si128((const __m128i*)&x1[d]);
uint32_t mask0 = (uint32_t)_mm_movemask_epi8(_mm_cmpeq_epi8(m0, m1));
if(0xFFFFUL != mask0) {
mask0 = (~mask0) & 0xFFFFUL;
uint32_t mask1 = (uint32_t)_mm_movemask_epi8(_mm_cmpeq_epi8(m0, _mm_min_epu8(m0, m1)));
uint32_t msb0 = bitscan(mask0);
return (mask1 >> msb0) & 0x01U;
}
d += 16;
}
#else
for(uint32_t d = 0; d < depth; ++d) {
if(x0[d] != x1[d]) {
return x0[d] < x1[d];
}
}
#endif
return false;
}
} // namespace
int32_t strcmp(const uint8_t* x0, const uint8_t* x1, uint32_t depth)
{
assert((depth & 15) == 0);
for(uint32_t d = 0; d < depth; ++d) {
if(x0[d] != x1[d]) {
return x0[d] < x1[d] ? -1 : 1;
}
}
return 0;
}
void insertionsort(uint32_t size, Item* v, uint32_t depth)
{
for(uint32_t i = 1; i < size; ++i) {
Item x = v[i];
int64_t j;
for(j = i - 1; 0 <= j && less(x.str_, v[j].str_, depth); --j) {
v[j + 1] = v[j];
}
v[j + 1] = x;
}
}
void heapsort(uint32_t n, Item* v, uint32_t depth)
{
--v; // set index = 1
int32_t i, j;
Item x;
for(int32_t k = n >> 1; k >= 1; --k) {
i = k;
x = v[k];
while((j = i << 1) <= n) {
if(j < n && less(v[j].str_, v[j + 1].str_, depth)) {
++j;
}
if(!less(x.str_, v[j].str_, depth)) {
break;
}
v[i] = v[j];
i = j;
}
v[i] = x;
}
while(n > 1) {
x = v[n];
v[n] = v[1];
--n;
i = 1;
while((j = i << 1) <= n) {
if(j < n && less(v[j].str_, v[j + 1].str_, depth)) {
++j;
}
if(!less(x.str_, v[j].str_, depth)) {
break;
}
v[i] = v[j];
i = j;
}
v[i] = x;
}
}
void mqsort(uint32_t size, Item* data, uint32_t d, uint32_t depth, int32_t level)
{
static constexpr uint32_t SwitchN = 37;
if(level <= 0) {
heapsort(size, data, depth);
return;
}
while(d < depth) {
if(size < SwitchN) {
insertionsort(size, data, depth);
return;
}
Item pivot = median(size, data);
const uint8_t p = pivot.str_[d];
int32_t h = static_cast<int32_t>(size) - 1;
int32_t i0 = 0;
int32_t i1 = h;
int32_t m0 = i0;
int32_t m1 = i1;
for(;;) {
while(i0 <= i1) {
uint8_t c = data[i0].str_[d];
if(p < c) {
break;
}
if(p == c) {
std::swap(data[i0], data[m0]);
++m0;
}
++i0;
}
while(i0 <= i1) {
uint8_t c = data[i1].str_[d];
if(c < p) {
break;
}
if(p == c) {
std::swap(data[i1], data[m1]);
--m1;
}
--i1;
}
if(i1 < i0) {
break;
}
std::swap(data[i0], data[i1]);
++i0;
--i1;
}
int32_t r0 = std::min(m0, i0 - m0);
for(int32_t i = 0; i < r0; ++i) {
std::swap(data[i], data[i1 - i]);
}
m0 = i0 - m0;
int32_t r1 = std::min(h - m1, m1 - i1);
for(int32_t i = 0; i < r1; ++i) {
std::swap(data[i0 + i], data[h - i]);
}
m1 = h - (m1 - i1) + 1;
if(0 < (m0 - 1)) {
mqsort(static_cast<uint32_t>(m0), data, d, depth, level - 1);
}
if(m1 < h) {
mqsort(static_cast<uint32_t>(static_cast<int32_t>(size) - m1), data + m1, d, depth, level - 1);
}
if(m1 <= m0) {
break;
}
data += m0;
size = static_cast<uint32_t>(m1 - m0);
++d;
}
}
void sort(uint32_t size, Item* data, uint32_t depth)
{
#if 0
int32_t level = 0;
uint32_t t = size;
while(1 < t) {
++level;
t >>= 1;
}
#else
const int32_t level = 11;
#endif
mqsort(size, data, 0, depth, level);
}
void counting_sort(uint32_t size, uint16_t* dst, const uint8_t* key, const uint16_t* value)
{
assert(0 == (size & 15));
BLKSORT_ALIGN(16)
uint16_t count[259];
::memset(count, 0, 256 * sizeof(uint16_t));
for(uint32_t i = 0; i < size; i += 4) {
count[key[i + 0]] += 1;
count[key[i + 1]] += 1;
count[key[i + 2]] += 1;
count[key[i + 3]] += 1;
}
for(uint32_t i = 1; i < 256; i += 4) {
uint16_t c0 = count[i - 1];
uint16_t c1 = count[i];
uint16_t c2 = count[i + 1];
uint16_t c3 = count[i + 2];
count[i] += c0;
c1 += c0;
count[i + 1] += c1;
c2 += c1;
count[i + 2] += c2;
c3 += c2;
count[i + 3] += c3;
}
for(int32_t i = static_cast<int32_t>(size - 1); 0 <= i; --i) {
uint8_t j0 = key[i];
--count[j0];
dst[count[j0]] = value[i];
}
}
BlkSort::BlkSort()
: size_(BlockSize)
, buffer_(nullptr)
{
size_t encodeSize = (sizeof(uint8_t) * 2 + sizeof(Item)) * size_;
size_t decodeSize = sizeof(uint16_t) * 2 * size_;
size_t mtfSize = sizeof(uint8_t) * 256;
size_t workSize = std::max(encodeSize, std::max(decodeSize, mtfSize));
buffer_ = (uint8_t*)BLKSORT_MALLOC(Align, workSize);
}
BlkSort::~BlkSort()
{
BLKSORT_FREE(buffer_);
buffer_ = nullptr;
}
uint32_t BlkSort::encodeBound(uint32_t size)
{
uint32_t blocks = size >> BlockShift;
uint32_t rawSize = size - (blocks << BlockShift);
return blocks * EncodedSize + rawSize;
}
uint32_t BlkSort::decodeBound(uint32_t size)
{
uint32_t blocks = size >> BlockShift;
uint32_t rawSize = size - (blocks << BlockShift);
return blocks * BlockSize + rawSize;
}
void BlkSort::encode(uint32_t size, uint8_t* BLKSORT_RESTRICT dst, const uint8_t* BLKSORT_RESTRICT data)
{
uint32_t blocks = size >> BlockShift;
uint32_t rawSize = size - blocks * BlockSize;
for(uint32_t i = 0; i < blocks; ++i) {
encode_internal(dst, data);
dst += EncodedSize;
data += BlockSize;
}
::memcpy(dst, data, rawSize);
}
void BlkSort::decode(uint32_t size, uint8_t* BLKSORT_RESTRICT dst, uint8_t* BLKSORT_RESTRICT data)
{
uint32_t blocks = size / EncodedSize;
uint32_t rawSize = size - blocks * EncodedSize;
for(uint32_t i = 0; i < blocks; ++i) {
decode_internal(dst, data);
dst += BlockSize;
data += EncodedSize;
}
::memcpy(dst, data, rawSize);
}
void BlkSort::encode_internal(uint8_t* BLKSORT_RESTRICT dst, const uint8_t* BLKSORT_RESTRICT data)
{
#if BLOCKSORT_PERF
std::chrono::high_resolution_clock::time_point start, end;
start = std::chrono::high_resolution_clock::now();
#endif
uint8_t* buffer = buffer_;
::memcpy(buffer, data, size_);
::memcpy(buffer + size_, data, size_);
Item* strings = (Item*)(buffer_ + size_ + size_);
{
for(int32_t i = 0; i < size_; i += 8) {
strings[i + 0].id_ = i + 0;
strings[i + 1].id_ = i + 1;
strings[i + 2].id_ = i + 2;
strings[i + 3].id_ = i + 3;
strings[i + 0].str_ = &buffer[i + 0];
strings[i + 1].str_ = &buffer[i + 1];
strings[i + 2].str_ = &buffer[i + 2];
strings[i + 3].str_ = &buffer[i + 3];
strings[i + 4].id_ = i + 4;
strings[i + 5].id_ = i + 5;
strings[i + 6].id_ = i + 6;
strings[i + 7].id_ = i + 7;
strings[i + 4].str_ = &buffer[i + 4];
strings[i + 5].str_ = &buffer[i + 5];
strings[i + 6].str_ = &buffer[i + 6];
strings[i + 7].str_ = &buffer[i + 7];
}
}
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
encode_setup += std::chrono::duration<double>(end - start).count();
start = std::chrono::high_resolution_clock::now();
#endif
sort(size_, strings, size_);
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
encode_sort += std::chrono::duration<double>(end - start).count();
#endif
#if BLOCKSORT_DEBUG
for(uint32_t i = 1; i < size_; ++i) {
assert(szsort::strcmp(strings[i - 1].str_, strings[i].str_, size_) < 0);
}
for(uint32_t i = 0; i < size_; ++i) {
for(uint32_t j = i + 1; j < size_; ++j) {
assert(strings[i].id_ != strings[j].id_);
}
}
#endif
#if BLOCKSORT_PERF
start = std::chrono::high_resolution_clock::now();
#endif
uint16_t pos = 0;
for(uint32_t i = 0; i < size_; ++i) {
dst[i] = strings[i].str_[size_ - 1];
if(0 == strings[i].id_) {
assert(0 == ::memcmp(strings[i].str_, data, size_));
pos = i;
}
}
::memcpy(dst + size_, &pos, sizeof(uint16_t));
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
encode_finalize += std::chrono::duration<double>(end - start).count();
#endif
#if BLOCKSORT_DEBUG
print(16, data);
for(uint32_t i = 0; i < 16; ++i) {
const szsort::Item& item = strings[i];
printf("[%d] ", i);
print(16, item.str_ + Size - 16);
}
print(16, dst);
printf("%d\n", pos);
#endif
#if BLOCKSORT_MTF
mtf_encode(BlockSize, dst);
#endif
}
void BlkSort::decode_internal(uint8_t* BLKSORT_RESTRICT dst, uint8_t* BLKSORT_RESTRICT data)
{
#if BLOCKSORT_MTF
mtf_decode(BlockSize, data);
#endif
#if BLOCKSORT_PERF
std::chrono::high_resolution_clock::time_point start, end;
start = std::chrono::high_resolution_clock::now();
#endif
uint16_t* id = (uint16_t*)buffer_;
#if defined(BLKSORT_AVX)
// clang-format off
BLKSORT_ALIGN(16) static const uint16_t ID0[8] = {0,1,2,3,4,5,6,7};
BLKSORT_ALIGN(16) static const uint16_t ID1[8] = {8,9,10,11,12,13,14,15};
BLKSORT_ALIGN(16) static const uint16_t ID2[8] = {16,17,18,19,20,21,22,23};
BLKSORT_ALIGN(16) static const uint16_t ID3[8] = {24,25,26,27,28,29,30,31};
// clang-format on
# if 0
if (size_ <= 32) {
__m128i c0 = _mm_load_si128((const __m128i*)ID0);
__m128i c1 = _mm_load_si128((const __m128i*)ID1);
__m128i add = _mm_set1_epi16(16);
for(uint32_t i = 0; i < size_; i += 16) {
_mm_store_si128((__m128i*)&id[i], c0);
c0 = _mm_adds_epi16(c0, add);
_mm_store_si128((__m128i*)&id[i + 8], c1);
c1 = _mm_adds_epi16(c1, add);
}
} else
# else
__m128i c0 = _mm_load_si128((const __m128i*)ID0);
__m128i c1 = _mm_load_si128((const __m128i*)ID1);
__m128i c2 = _mm_load_si128((const __m128i*)ID2);
__m128i c3 = _mm_load_si128((const __m128i*)ID3);
__m128i add = _mm_set1_epi16(32);
for(uint32_t i = 0; i < size_; i += 32) {
_mm_store_si128((__m128i*)&id[i], c0);
c0 = _mm_adds_epi16(c0, add);
_mm_store_si128((__m128i*)&id[i + 8], c1);
c1 = _mm_adds_epi16(c1, add);
_mm_store_si128((__m128i*)&id[i + 16], c2);
c2 = _mm_adds_epi16(c2, add);
_mm_store_si128((__m128i*)&id[i + 24], c3);
c3 = _mm_adds_epi16(c3, add);
}
# endif
#elif defined(BLKSORT_NEON)
// clang-format off
BLKSORT_ALIGN(16) static const uint16_t ID0[8] = {0,1,2,3,4,5,6,7};
BLKSORT_ALIGN(16) static const uint16_t ID1[8] = {8,9,10,11,12,13,14,15};
BLKSORT_ALIGN(16) static const uint16_t ID2[8] = {16,17,18,19,20,21,22,23};
BLKSORT_ALIGN(16) static const uint16_t ID3[8] = {24,25,26,27,28,29,30,31};
// clang-format on
uint16x8_t c0 = vld1q_u16(ID0);
uint16x8_t c1 = vld1q_u16(ID1);
uint16x8_t c2 = vld1q_u16(ID2);
uint16x8_t c3 = vld1q_u16(ID3);
uint16x8_t add = vmovq_n_u16(32);
for(uint32_t i = 0; i < size_; i += 32) {
vst1q_u16(&id[i], c0);
c0 = vaddq_u16(c0, add);
vst1q_u16(&id[i + 8], c1);
c1 = vaddq_u16(c1, add);
vst1q_u16(&id[i + 16], c2);
c2 = vaddq_u16(c2, add);
vst1q_u16(&id[i + 24], c3);
c3 = vaddq_u16(c3, add);
}
#else
for(uint32_t i = 0; i < size_; i += 4) {
id[i + 0] = i + 0;
id[i + 1] = i + 1;
id[i + 2] = i + 2;
id[i + 3] = i + 3;
}
#endif
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
decode_setup += std::chrono::duration<double>(end - start).count();
start = std::chrono::high_resolution_clock::now();
#endif
uint16_t* out_id = (uint16_t*)(buffer_ + size_ + size_);
counting_sort(size_, out_id, data, id);
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
decode_sort += std::chrono::duration<double>(end - start).count();
#endif
#if BLOCKSORT_DEBUG
for(uint32_t i = 0; i < Size; ++i) {
for(uint32_t j = i + 1; j < Size; ++j) {
assert(out_id[i] != out_id[j]);
}
}
for(uint32_t i = 1; i < Size; ++i) {
assert(data[out_id[i - 1]] <= data[out_id[i]]);
}
#endif
#if BLOCKSORT_PERF
start = std::chrono::high_resolution_clock::now();
#endif
uint16_t top;
::memcpy(&top, data + size_, sizeof(uint16_t));
uint16_t p = out_id[top];
for(uint32_t i = 0; i < size_; ++i) {
dst[i] = data[p];
p = out_id[p];
}
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
decode_finalize += std::chrono::duration<double>(end - start).count();
#endif
#if BLOCKSORT_DEBUG
print(16, data);
print(16, dst);
#endif
}
void BlkSort::mtf_init(uint8_t* BLKSORT_RESTRICT id)
{
static BLKSORT_ALIGN(16) const uint8_t ID0[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
static BLKSORT_ALIGN(16) const uint8_t ID1[16] = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
static BLKSORT_ALIGN(16) const uint8_t ID2[16] = {32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47};
static BLKSORT_ALIGN(16) const uint8_t ID3[16] = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63};
#ifdef BLKSORT_AVX
__m128i c0 = _mm_load_si128((const __m128i*)ID0);
__m128i c1 = _mm_load_si128((const __m128i*)ID1);
__m128i c2 = _mm_load_si128((const __m128i*)ID2);
__m128i c3 = _mm_load_si128((const __m128i*)ID3);
__m128i add = _mm_set1_epi8(64);
for(uint32_t i = 0; i < 256; i += 64) {
_mm_store_si128((__m128i*)&id[i], c0);
c0 = _mm_add_epi8(c0, add);
_mm_store_si128((__m128i*)&id[i + 16], c1);
c1 = _mm_add_epi8(c1, add);
_mm_store_si128((__m128i*)&id[i + 32], c2);
c2 = _mm_add_epi8(c2, add);
_mm_store_si128((__m128i*)&id[i + 48], c3);
c3 = _mm_add_epi8(c3, add);
}
#else
for(uint32_t i = 0; i < 256; i += 4) {
id[i + 0] = i + 0;
id[i + 1] = i + 1;
id[i + 2] = i + 2;
id[i + 3] = i + 3;
}
#endif
}
uint8_t BlkSort::mtf_find(const uint8_t* BLKSORT_RESTRICT table, uint8_t x)
{
#ifdef BLKSORT_AVX
__m128i c = _mm_set1_epi8(*(char*)&x);
for(uint32_t i = 0; i < 256; i += 16) {
__m128i str0 = _mm_load_si128((const __m128i*)&table[i]);
int32_t r0 = _mm_cmpestri(c, 1, str0, 16, 0);
if(r0 <= 0xF) {
assert(x == table[i + r0]);
assert((i + r0) < 256);
return static_cast<uint8_t>(i + r0);
}
}
#else
for(uint32_t i = 0; i < 256; ++i) {
if(table[i] == x) {
return static_cast<uint8_t>(i);
}
}
#endif
return -1;
}
void BlkSort::mtf_move_to_front_one(uint8_t* BLKSORT_RESTRICT table, uint8_t x)
{
assert(1 < x);
uint8_t c = table[x];
::memmove(table + 2, table + 1, x - 1);
table[1] = c;
}
void BlkSort::mtf_encode(uint32_t size, uint8_t* BLKSORT_RESTRICT data)
{
#if BLOCKSORT_PERF
std::chrono::high_resolution_clock::time_point start, end;
start = std::chrono::high_resolution_clock::now();
#endif
BLKSORT_ALIGN(16)
uint8_t table[256];
mtf_init(table);
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
mtf_encode_setup += std::chrono::duration<double>(end - start).count();
start = std::chrono::high_resolution_clock::now();
#endif
uint8_t prev = 1;
for(uint32_t i = 0; i < size; ++i) {
uint8_t c = data[i];
uint8_t x = mtf_find(table, c);
if(1 == x) {
if(0 != prev) {
table[1] = table[0];
table[0] = c;
}
} else if(1 < x) {
mtf_move_to_front_one(table, x);
}
data[i] = x;
prev = x;
}
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
mtf_encode_main += std::chrono::duration<double>(end - start).count();
#endif
}
void BlkSort::mtf_decode(uint32_t size, uint8_t* BLKSORT_RESTRICT data)
{
#if BLOCKSORT_PERF
std::chrono::high_resolution_clock::time_point start, end;
start = std::chrono::high_resolution_clock::now();
#endif
BLKSORT_ALIGN(16)
uint8_t table[256];
mtf_init(table);
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
mtf_decode_setup += std::chrono::duration<double>(end - start).count();
start = std::chrono::high_resolution_clock::now();
#endif
uint8_t prev = 1;
for(uint32_t i = 0; i < size; ++i) {
uint8_t x0 = data[i + 0];
uint8_t c0 = table[x0];
data[i + 0] = c0;
if(1 == x0) {
if(0 != prev) {
table[1] = table[0];
table[0] = c0;
}
} else if(1 < x0) {
mtf_move_to_front_one(table, x0);
}
prev = x0;
}
#if BLOCKSORT_PERF
end = std::chrono::high_resolution_clock::now();
mtf_decode_main += std::chrono::duration<double>(end - start).count();
#endif
}
} // namespace blksort
#endif // BLKSORT_IMPLEMENTATION