1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

ベイズの定理

Posted at

この記事は以下の記事のリポストです。
https://takutori.blogspot.com/2018/04/bayes-theorem.html

Introduction

今回はベイズの定理について書こうと思います。
ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。

ベイズの定理

ベイズの定理とは

確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率)
確率P(B):事象Aが起こる前の事象Bの確率(事前確率)
とするとき以下が成り立つことを示しています。

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$

例えば、次のように事象A、事象Bwo定義します。

事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える
事象B:あるYoutuberがお金を50万円以上使う動画を投稿する

この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。)

確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。

確率P(A|B)が低い時を考えてみましょう。
つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。

ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。

つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuberが50万円以上使う動画を投稿すr確率がかなり、低い。このどちらかが考えられます。P(A)が高いとき、そのYouruberが単に大人気なのであって、動画の再生回数が100万回を超える原因が50万円以上お金を使ったことにあるとは限りません。また、P(B)が低いとき、つまり、50万円以上お金を使った動画が少ないときは、たまたま、100万円を超えただけで、本当の原因が50万円以上使ったことにあるとは限りません。

このようにベイズの定理では、結果から原因を推定する力があります。

式の導出

最後にベイズの定理の式を導出しようと思います。まず条件付き確率の式を確認します。ある事象Bが起こった時、事象Aが起こっている確率(条件付き確率)は
$$P(A|B) = \frac{P(A,B)}{P(B)}$$
ただし、P(A,B)はAとBの同時確率を表します。
この式をベイズの定理の式の右辺に代入します。
$$\frac{P(A|B)P(B)}{P(A)} = \frac{\frac{(P(A,B)}{P(B)} P(B)}{P(A)} = P(B|A)$$

References
https://ja.wikipedia.org/wiki/ベイズの定理

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?