37
10

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

野菜だけで一日分の栄養を取れる組み合わせを計算したら衝撃の結果が!

Last updated at Posted at 2021-08-10

マクドナルドで一日分の栄養を取れる組み合わせを計算したら衝撃の結果が!では、なみいるマックメニューの中からサイドサラダの大量摂取が選ばれました。ということは、野菜だけを食べれば一日分の栄養が取れるのでは?菜食主義なんて言葉もありますし、なによりも我々は呪文のように子供のころから野菜をとりなさいと言われ続けてきました。

そこで、野菜だけで一日に必要な栄養素を取るための組み合わせを調べました。

#式を立てる
マクドナルドで一日分の栄養を取れる組み合わせを計算したら衝撃の結果が!と同じように、線形計画法で解きます。野菜の栄養素のデータは、文部科学省が公開している食品成分データベースから頂きます。一つの野菜で複数部位がある場合は、生かつ一般的な可食部を採用します。

日本人が一日に必要な栄養素はマクドナルドで一日分の栄養を取れる組み合わせを計算したら衝撃の結果が!で設定した以下値を流用します。

|栄養素|基準量|
|:---|:---:|--:|
|たんぱく質 (g)|39|
|脂質 (g)|75|
|炭水化物 (g)|675|
|ナトリウム (mg)|5000
|カリウム (mg)|3000
|カルシウム (mg)|738
|リン (mg)|600
|鉄 (mg)|6.3
|ビタミンA (μg)|625
|ビタミンB1 (mg)|1.4
|ビタミンB2 (mg)|1.6
|ナイアシン (mg)|15
|ビタミンC (mg)|100
|コレステロール (mg)|0
|食物繊維 (g)|21
|食塩相当量 (g)|5

そして目的は、__一日で必要な栄養素を満たす最も安い野菜の組み合わせ__とします。野菜は高いですからねー。野菜の価格は東京都中央卸売市場の市場統計情報から令和3年6月の平均価格を用います。さて、計111種類の野菜データが揃いました!

#解く
AIで解きます。嘘です。ごめんなさい。おなじみですが言ってみたかっただけです。Pythonの無料ソルバーPuLPで解きます。

vesi1.py
import pulp

# 問題の定義
problem = pulp.LpProblem(name="vesi1", sense=pulp.LpMinimize)

# 変数の定義
AA = pulp.LpVariable(name = "AA", lowBound = 0, cat="Continuous")
AB = pulp.LpVariable(name = "AB", lowBound = 0, cat="Continuous")
AC = pulp.LpVariable(name = "AC", lowBound = 0, cat="Continuous")
AD = pulp.LpVariable(name = "AD", lowBound = 0, cat="Continuous")
AE = pulp.LpVariable(name = "AE", lowBound = 0, cat="Continuous")
AF = pulp.LpVariable(name = "AF", lowBound = 0, cat="Continuous")
AG = pulp.LpVariable(name = "AG", lowBound = 0, cat="Continuous")
AH = pulp.LpVariable(name = "AH", lowBound = 0, cat="Continuous")
AI = pulp.LpVariable(name = "AI", lowBound = 0, cat="Continuous")
AJ = pulp.LpVariable(name = "AJ", lowBound = 0, cat="Continuous")
AK = pulp.LpVariable(name = "AK", lowBound = 0, cat="Continuous")
AL = pulp.LpVariable(name = "AL", lowBound = 0, cat="Continuous")
AM = pulp.LpVariable(name = "AM", lowBound = 0, cat="Continuous")
AN = pulp.LpVariable(name = "AN", lowBound = 0, cat="Continuous")
AO = pulp.LpVariable(name = "AO", lowBound = 0, cat="Continuous")
AP = pulp.LpVariable(name = "AP", lowBound = 0, cat="Continuous")
AQ = pulp.LpVariable(name = "AQ", lowBound = 0, cat="Continuous")
AR = pulp.LpVariable(name = "AR", lowBound = 0, cat="Continuous")
AS = pulp.LpVariable(name = "AS", lowBound = 0, cat="Continuous")
AT = pulp.LpVariable(name = "AT", lowBound = 0, cat="Continuous")
AU = pulp.LpVariable(name = "AU", lowBound = 0, cat="Continuous")
AV = pulp.LpVariable(name = "AV", lowBound = 0, cat="Continuous")
AW = pulp.LpVariable(name = "AW", lowBound = 0, cat="Continuous")
AX = pulp.LpVariable(name = "AX", lowBound = 0, cat="Continuous")
AY = pulp.LpVariable(name = "AY", lowBound = 0, cat="Continuous")
AZ = pulp.LpVariable(name = "AZ", lowBound = 0, cat="Continuous")
BA = pulp.LpVariable(name = "BA", lowBound = 0, cat="Continuous")
BB = pulp.LpVariable(name = "BB", lowBound = 0, cat="Continuous")
BC = pulp.LpVariable(name = "BC", lowBound = 0, cat="Continuous")
BD = pulp.LpVariable(name = "BD", lowBound = 0, cat="Continuous")
BE = pulp.LpVariable(name = "BE", lowBound = 0, cat="Continuous")
BF = pulp.LpVariable(name = "BF", lowBound = 0, cat="Continuous")
BG = pulp.LpVariable(name = "BG", lowBound = 0, cat="Continuous")
BH = pulp.LpVariable(name = "BH", lowBound = 0, cat="Continuous")
BI = pulp.LpVariable(name = "BI", lowBound = 0, cat="Continuous")
BJ = pulp.LpVariable(name = "BJ", lowBound = 0, cat="Continuous")
BK = pulp.LpVariable(name = "BK", lowBound = 0, cat="Continuous")
BL = pulp.LpVariable(name = "BL", lowBound = 0, cat="Continuous")
BM = pulp.LpVariable(name = "BM", lowBound = 0, cat="Continuous")
BN = pulp.LpVariable(name = "BN", lowBound = 0, cat="Continuous")
BO = pulp.LpVariable(name = "BO", lowBound = 0, cat="Continuous")
BP = pulp.LpVariable(name = "BP", lowBound = 0, cat="Continuous")
BQ = pulp.LpVariable(name = "BQ", lowBound = 0, cat="Continuous")
BR = pulp.LpVariable(name = "BR", lowBound = 0, cat="Continuous")
BS = pulp.LpVariable(name = "BS", lowBound = 0, cat="Continuous")
BT = pulp.LpVariable(name = "BT", lowBound = 0, cat="Continuous")
BU = pulp.LpVariable(name = "BU", lowBound = 0, cat="Continuous")
BV = pulp.LpVariable(name = "BV", lowBound = 0, cat="Continuous")
BW = pulp.LpVariable(name = "BW", lowBound = 0, cat="Continuous")
BX = pulp.LpVariable(name = "BX", lowBound = 0, cat="Continuous")
BY = pulp.LpVariable(name = "BY", lowBound = 0, cat="Continuous")
BZ = pulp.LpVariable(name = "BZ", lowBound = 0, cat="Continuous")
CA = pulp.LpVariable(name = "CA", lowBound = 0, cat="Continuous")
CB = pulp.LpVariable(name = "CB", lowBound = 0, cat="Continuous")
CC = pulp.LpVariable(name = "CC", lowBound = 0, cat="Continuous")
CD = pulp.LpVariable(name = "CD", lowBound = 0, cat="Continuous")
CE = pulp.LpVariable(name = "CE", lowBound = 0, cat="Continuous")
CF = pulp.LpVariable(name = "CF", lowBound = 0, cat="Continuous")
CG = pulp.LpVariable(name = "CG", lowBound = 0, cat="Continuous")
CH = pulp.LpVariable(name = "CH", lowBound = 0, cat="Continuous")
CI = pulp.LpVariable(name = "CI", lowBound = 0, cat="Continuous")
CJ = pulp.LpVariable(name = "CJ", lowBound = 0, cat="Continuous")
CK = pulp.LpVariable(name = "CK", lowBound = 0, cat="Continuous")
CL = pulp.LpVariable(name = "CL", lowBound = 0, cat="Continuous")
CM = pulp.LpVariable(name = "CM", lowBound = 0, cat="Continuous")
CN = pulp.LpVariable(name = "CN", lowBound = 0, cat="Continuous")
CO = pulp.LpVariable(name = "CO", lowBound = 0, cat="Continuous")
CP = pulp.LpVariable(name = "CP", lowBound = 0, cat="Continuous")
CQ = pulp.LpVariable(name = "CQ", lowBound = 0, cat="Continuous")
CR = pulp.LpVariable(name = "CR", lowBound = 0, cat="Continuous")
CS = pulp.LpVariable(name = "CS", lowBound = 0, cat="Continuous")
CT = pulp.LpVariable(name = "CT", lowBound = 0, cat="Continuous")
CU = pulp.LpVariable(name = "CU", lowBound = 0, cat="Continuous")
CV = pulp.LpVariable(name = "CV", lowBound = 0, cat="Continuous")
CW = pulp.LpVariable(name = "CW", lowBound = 0, cat="Continuous")
CX = pulp.LpVariable(name = "CX", lowBound = 0, cat="Continuous")
CY = pulp.LpVariable(name = "CY", lowBound = 0, cat="Continuous")
CZ = pulp.LpVariable(name = "CZ", lowBound = 0, cat="Continuous")
DA = pulp.LpVariable(name = "DA", lowBound = 0, cat="Continuous")
DB = pulp.LpVariable(name = "DB", lowBound = 0, cat="Continuous")
DC = pulp.LpVariable(name = "DC", lowBound = 0, cat="Continuous")
DD = pulp.LpVariable(name = "DD", lowBound = 0, cat="Continuous")
DE = pulp.LpVariable(name = "DE", lowBound = 0, cat="Continuous")
DF = pulp.LpVariable(name = "DF", lowBound = 0, cat="Continuous")
DG = pulp.LpVariable(name = "DG", lowBound = 0, cat="Continuous")
DH = pulp.LpVariable(name = "DH", lowBound = 0, cat="Continuous")
DI = pulp.LpVariable(name = "DI", lowBound = 0, cat="Continuous")
DJ = pulp.LpVariable(name = "DJ", lowBound = 0, cat="Continuous")
DK = pulp.LpVariable(name = "DK", lowBound = 0, cat="Continuous")
DL = pulp.LpVariable(name = "DL", lowBound = 0, cat="Continuous")
DM = pulp.LpVariable(name = "DM", lowBound = 0, cat="Continuous")
DN = pulp.LpVariable(name = "DN", lowBound = 0, cat="Continuous")
DO = pulp.LpVariable(name = "DO", lowBound = 0, cat="Continuous")
DP = pulp.LpVariable(name = "DP", lowBound = 0, cat="Continuous")
DQ = pulp.LpVariable(name = "DQ", lowBound = 0, cat="Continuous")
DR = pulp.LpVariable(name = "DR", lowBound = 0, cat="Continuous")
DS = pulp.LpVariable(name = "DS", lowBound = 0, cat="Continuous")
DT = pulp.LpVariable(name = "DT", lowBound = 0, cat="Continuous")
DU = pulp.LpVariable(name = "DU", lowBound = 0, cat="Continuous")
DV = pulp.LpVariable(name = "DV", lowBound = 0, cat="Continuous")
DW = pulp.LpVariable(name = "DW", lowBound = 0, cat="Continuous")
DX = pulp.LpVariable(name = "DX", lowBound = 0, cat="Continuous")
DY = pulp.LpVariable(name = "DY", lowBound = 0, cat="Continuous")
DZ = pulp.LpVariable(name = "DZ", lowBound = 0, cat="Continuous")
EA = pulp.LpVariable(name = "EA", lowBound = 0, cat="Continuous")
EB = pulp.LpVariable(name = "EB", lowBound = 0, cat="Continuous")
EC = pulp.LpVariable(name = "EC", lowBound = 0, cat="Continuous")
ED = pulp.LpVariable(name = "ED", lowBound = 0, cat="Continuous")

# 目的関数
problem +=  108*AA+ 127*AB+ 124*AC+ 537*AD+ 391*AE+ 1175*AF+ 1044*AG+ 86*AH+ 112*AI+ 121*AJ+ 250*AK+ 72*AL+ 251*AM+ 275*AN+ 261*AO+ 458*AP+ 428*AQ+ 368*AR+ 832*AS+ 524*AT+ 1172*AU+ 330*AV+ 553*AW+ 1035*AX+ 2177*AY+ 298*AZ+ 522*BA+ 838*BB+ 1252*BC+ 570*BD+ 285*BE+ 1328*BF+ 289*BG+ 458*BH+ 372*BI+ 759*BJ+ 556*BK+ 235*BL+ 229*BM+ 932*BN+ 131*BO+ 1252*BP+ 1529*BQ+ 418*BR+ 1032*BS+ 685*BT+ 597*BU+ 266*BV+ 201*BW+ 281*BX+ 397*BY+ 323*BZ+ 300*CA+ 508*CB+ 505*CC+ 410*CD+ 1186*CE+ 295*CF+ 1090*CG+ 194*CH+ 207*CI+ 488*CJ+ 866*CK+ 1115*CL+ 861*CM+ 506*CN+ 1125*CO+ 190*CP+ 401*CQ+ 477*CR+ 180*CS+ 180*CT+ 308*CU+ 583*CV+ 106*CW+ 1039*CX+ 569*CY+ 1003*CZ+ 4902*DA+ 169*DB+ 4041*DC+ 748*DD+ 994*DE+ 1319*DF+ 2343*DG+ 729*DH+ 810*DI+ 2296*DJ+ 1596*DK+ 936*DL+ 2006*DM+ 777*DN+ 147825*DO+ 378*DP+ 217*DQ+ 365*DR+ 820*DS+ 616*DT+ 468*DU+ 529*DV+ 614*DW+ 621*DX+ 1278*DY+ 1097*DZ+ 1143*EA+ 3188*EB+ 118*EC+ 717*ED

# 制約条件の定義
problem +=  0.4*AA+ 0.6*AB+ 0.8*AC+ 1.5*AD+ 3.6*AE+ 1.9*AF+ 3.1*AG+ 1.3*AH+ 1.4*AI+ 0.6*AJ+ 1.2*AK+ 1.3*AL+ 1*AM+ 2.2*AN+ 1.5*AO+ 1.9*AP+ 2.2*AQ+ 1.4*AR+ 2*AS+ 1.6*AT+ 4.2*AU+ 0.3*AV+ 0.8*AW+ 1.9*AX+ 1*AY+ 0.9*AZ+ 2.3*BA+ 2*BB+ 3.3*BC+ 1.7*BD+ 0.4*BE+ 2.6*BF+ 3*BG+ 5.4*BH+ 1*BI+ 4*BJ+ 1.9*BK+ 0.6*BL+ 1.3*BM+ 4.4*BN+ 2*BO+ 5.7*BP+ 2.1*BQ+ 1.2*BR+ 4.8*BS+ 1.2*BT+ 2.2*BU+ 1*BV+ 1.6*BW+ 1.3*BX+ 1.1*BY+ 1.1*BZ+ 0.7*CA+ 1.1*CB+ 0.9*CC+ 0.8*CD+ 1.9*CE+ 8.6*CF+ 2.1*CG+ 0.5*CH+ 0.9*CI+ 1*CJ+ 6.7*CK+ 3.1*CL+ 6.9*CM+ 7.9*CN+ 11.7*CO+ 1.8*CP+ 1.2*CQ+ 1.5*CR+ 1.7*CS+ 3*CT+ 2.2*CU+ 4.5*CV+ 1*CW+ 6.4*CX+ 1.4*CY+ 2.3*CZ+ 3.8*DA+ 0.9*DB+ 5.6*DC+ 0.7*DD+ 0.5*DE+ 1.9*DF+ 3*DG+ 2.1*DH+ 3.9*DI+ 3.9*DJ+ 0.9*DK+ 0.4*DL+ 11.6*DM+ 3.1*DN+ 2*DO+ 1.8*DP+ 2.7*DQ+ 2.5*DR+ 2.9*DS+ 2*DT+ 2.8*DU+ 2.4*DV+ 1.1*DW+ 0.7*DX+ 0.5*DY+ 0.5*DZ+ 0.4*EA+ 4.7*EB+ 1.7*EC+ 1*ED    >= 39

problem +=  0.1*AA+ 0.1*AB+ 0.1*AC+ 0.2*AD+ 0.2*AE+ 0.1*AF+ 0.3*AG+ 0.2*AH+ 0.1*AI+ 0.1*AJ+ 0.2*AK+ 0.1*AL+ 0.2*AM+ 0.1*AN+ 0.2*AO+ 0.3*AP+ 0.4*AQ+ 0.1*AR+ 0.3*AS+ 0*AT+ 0.3*AU+ 0*AV+ 0.1*AW+ 0.1*AX+ 0.1*AY+ 0.1*AZ+ 0.3*BA+ 0.1*BB+ 0.1*BC+ 0.3*BD+ 0.1*BE+ 0.2*BF+ 0.1*BG+ 0.6*BH+ 0.2*BI+ 0.7*BJ+ 0.3*BK+ 0.1*BL+ 0.2*BM+ 0.2*BN+ 0.1*BO+ 0.1*BP+ 0.1*BQ+ 0.2*BR+ 0.5*BS+ 0.4*BT+ 0.1*BU+ 0.1*BV+ 0.1*BW+ 0.1*BX+ 0.1*BY+ 0.1*BZ+ 0.1*CA+ 0.1*CB+ 0.2*CC+ 0.2*CD+ 0.3*CE+ 5*CF+ 0.2*CG+ 0.1*CH+ 0.1*CI+ 0.1*CJ+ 1.3*CK+ 0.2*CL+ 0.4*CM+ 1.2*CN+ 6.2*CO+ 0.1*CP+ 0.2*CQ+ 0.1*CR+ 0.4*CS+ 0.7*CT+ 0.3*CU+ 0.2*CV+ 0.1*CW+ 0.9*CX+ 0.2*CY+ 0.2*CZ+ 0.1*DA+ 0.1*DB+ 0.2*DC+ 0.8*DD+ 0.2*DE+ 0.3*DF+ 0.5*DG+ 0.5*DH+ 0.1*DI+ 0.1*DJ+ 0.1*DK+ 0.1*DL+ 0.2*DM+ 0.3*DN+ 0.6*DO+ 0.2*DP+ 0.2*DQ+ 0.4*DR+ 0.3*DS+ 0.5*DT+ 0.4*DU+ 0.1*DV+ 0.1*DW+ 0.5*DX+ 0.1*DY+ 0.1*DZ+ 0.1*EA+ 1.6*EB+ 0.1*EC+ 0.5*ED    >= 75


problem +=  4.1*AA+ 4.8*AB+ 8.7*AC+ 13.7*AD+ 4.3*AE+ 15.5*AF+ 17.7*AG+ 5.2*AH+ 4.3*AI+ 2.8*AJ+ 3.2*AK+ 2.6*AL+ 2.7*AM+ 4.8*AN+ 2.4*AO+ 3.6*AP+ 3.1*AQ+ 8.3*AR+ 5.4*AS+ 7.4*AT+ 5.6*AU+ 3*AV+ 4.3*AW+ 4.1*AX+ 4*AY+ 2.9*AZ+ 3.9*BA+ 3.3*BB+ 6.7*BC+ 4*BD+ 3.6*BE+ 3.9*BF+ 5.2*BG+ 6.6*BH+ 2.7*BI+ 7.8*BJ+ 10.6*BK+ 2*BL+ 2.2*BM+ 5.8*BN+ 6.7*BO+ 9.9*BP+ 2.5*BQ+ 2.9*BR+ 6.3*BS+ 2.5*BT+ 3.1*BU+ 3*BV+ 10.9*BW+ 2.8*BX+ 5.1*BY+ 5.3*BZ+ 4.7*CA+ 7.2*CB+ 5.1*CC+ 6.6*CD+ 5.7*CE+ 70.6*CF+ 6.6*CG+ 3.8*CH+ 3.3*CI+ 3.9*CJ+ 49.6*CK+ 7.5*CL+ 15.3*CM+ 52.2*CN+ 8.8*CO+ 17.3*CP+ 31.9*CQ+ 13.1*CR+ 23.5*CS+ 20.5*CT+ 13.9*CU+ 27.1*CV+ 8.4*CW+ 27.5*CX+ 29.3*CY+ 17.8*CZ+ 28.3*DA+ 9*DB+ 18.4*DC+ 16*DD+ 2.1*DE+ 5.7*DF+ 8.8*DG+ 3.3*DH+ 7.5*DI+ 7.5*DJ+ 2.6*DK+ 1.5*DL+ 73.5*DM+ 6.4*DN+ 8.2*DO+ 5.4*DP+ 7.6*DQ+ 2.8*DR+ 2.1*DS+ 4.4*DT+ 6*DU+ 4*DV+ 4.3*DW+ 7.9*DX+ 7*DY+ 6.6*DZ+ 8.5*EA+ 34.8*EB+ 2.6*EC+ 3.6*ED    >= 675

problem +=  17*AA+ 5*AB+ 34*AC+ 11*AD+ 0*AE+ 24*AF+ 1*AG+ 5*AH+ 4*AI+ 2*AJ+ 4*AK+ 21*AL+ 9*AM+ 36*AN+ 15*AO+ 22*AP+ 16*AQ+ 0*AR+ 1*AS+ 1*AT+ 4*AU+ 35*AV+ 0*AW+ 5*AX+ 8*AY+ 3*AZ+ 73*BA+ 19*BB+ 60*BC+ 1*BD+ 28*BE+ 2*BF+ 8*BG+ 7*BH+ 6*BI+ 9*BJ+ 9*BK+ 32*BL+ 29*BM+ 16*BN+ 4*BO+ 5*BP+ 23*BQ+ 35*BR+ 1*BS+ 3*BT+ 26*BU+ 1*BV+ 1*BW+ 1*BX+ 0*BY+ 1*BZ+ 3*CA+ 4*CB+ 1*CC+ 0*CD+ 1*CE+ 3*CF+ 4*CG+ 1*CH+ 1*CI+ 1*CJ+ 110*CK+ 1*CL+ 1*CM+ 160*CN+ 1*CO+ 1*CP+ 11*CQ+ 0*CR+ 1*CS+ 1*CT+ 3*CU+ 12*CV+ 2*CW+ 8*CX+ 2*CY+ 2*CZ+ 1*DA+ 2*DB+ 24*DC+ 4*DD+ 5*DE+ 1*DF+ 9*DG+ 5*DH+ 1*DI+ 1*DJ+ 1*DK+ 0*DL+ 14*DM+ 1*DN+ 2*DO+ 3*DP+ 2*DQ+ 1*DR+ 6*DS+ 0*DT+ 2*DU+ 0*DV+ 1*DW+ 2*DX+ 1*DY+ 1*DZ+ 1*EA+ 0*EB+ 2*EC+ 360*ED    >= 5000
problem +=  230*AA+ 250*AB+ 270*AC+ 210*AD+ 520*AE+ 440*AF+ 510*AG+ 200*AH+ 270*AI+ 200*AJ+ 410*AK+ 300*AL+ 360*AM+ 480*AN+ 500*AO+ 450*AP+ 690*AQ+ 200*AR+ 320*AS+ 230*AT+ 330*AU+ 330*AV+ 220*AW+ 500*AX+ 640*AY+ 500*AZ+ 460*BA+ 410*BB+ 540*BC+ 510*BD+ 410*BE+ 270*BF+ 410*BG+ 460*BH+ 410*BI+ 1000*BJ+ 160*BK+ 260*BL+ 430*BM+ 390*BN+ 310*BO+ 610*BP+ 330*BQ+ 270*BR+ 530*BS+ 470*BT+ 380*BU+ 200*BV+ 400*BW+ 320*BX+ 220*BY+ 220*BZ+ 210*CA+ 290*CB+ 190*CC+ 200*CD+ 340*CE+ 290*CF+ 260*CG+ 200*CH+ 220*CI+ 260*CJ+ 230*CK+ 200*CL+ 340*CM+ 110*CN+ 590*CO+ 410*CP+ 480*CQ+ 640*CR+ 520*CS+ 630*CT+ 430*CU+ 590*CV+ 150*CW+ 510*CX+ 230*CY+ 290*CZ+ 740*DA+ 150*DB+ 500*DC+ 380*DD+ 310*DE+ 340*DF+ 140*DG+ 99*DH+ 500*DI+ 500*DJ+ 210*DK+ 350*DL+ 2500*DM+ 290*DN+ 410*DO+ 240*DP+ 340*DQ+ 310*DR+ 350*DS+ 230*DT+ 340*DU+ 370*DV+ 270*DW+ 240*DX+ 210*DY+ 140*DZ+ 140*EA+ 710*EB+ 69*EC+ 6*ED    >= 3000
problem +=  23*AA+ 24*AB+ 26*AC+ 48*AD+ 16*AE+ 20*AF+ 110*AG+ 43*AH+ 58*AI+ 19*AJ+ 66*AK+ 140*AL+ 140*AM+ 210*AN+ 170*AO+ 210*AP+ 49*AQ+ 36*AR+ 100*AS+ 59*AT+ 20*AU+ 40*AV+ 7*AW+ 52*AX+ 25*AY+ 47*AZ+ 120*BA+ 34*BB+ 65*BC+ 48*BD+ 39*BE+ 19*BF+ 24*BG+ 50*BH+ 56*BI+ 290*BJ+ 45*BK+ 100*BL+ 120*BM+ 160*BN+ 40*BO+ 37*BP+ 110*BQ+ 51*BR+ 260*BS+ 62*BT+ 74*BU+ 26*BV+ 20*BW+ 24*BX+ 18*BY+ 10*BZ+ 7*CA+ 12*CB+ 11*CC+ 8*CD+ 11*CE+ 5*CF+ 92*CG+ 19*CH+ 35*CI+ 14*CJ+ 41*CK+ 35*CL+ 23*CM+ 54*CN+ 58*CO+ 4*CP+ 36*CQ+ 10*CR+ 39*CS+ 39*CT+ 17*CU+ 16*CV+ 17*CW+ 14*CX+ 14*CY+ 20*CZ+ 10*DA+ 19*DB+ 100*DC+ 39*DD+ 15*DE+ 11*DF+ 49*DG+ 54*DH+ 230*DI+ 230*DJ+ 25*DK+ 11*DL+ 160*DM+ 1*DN+ 6*DO+ 4*DP+ 0*DQ+ 2*DR+ 3*DS+ 0*DT+ 0*DU+ 12*DV+ 11*DW+ 12*DX+ 20*DY+ 16*DZ+ 7*EA+ 5*EB+ 10*EC+ 18*ED    >= 738
problem +=  17*AA+ 25*AB+ 25*AC+ 46*AD+ 62*AE+ 74*AF+ 58*AG+ 27*AH+ 41*AI+ 22*AJ+ 31*AK+ 37*AL+ 27*AM+ 64*AN+ 45*AO+ 55*AP+ 47*AQ+ 27*AR+ 36*AS+ 25*AT+ 86*AU+ 18*AV+ 25*AW+ 64*AX+ 50*AY+ 47*AZ+ 44*BA+ 51*BB+ 65*BC+ 31*BD+ 39*BE+ 60*BF+ 68*BG+ 110*BH+ 49*BI+ 61*BJ+ 33*BK+ 27*BL+ 46*BM+ 86*BN+ 43*BO+ 73*BP+ 57*BQ+ 30*BR+ 110*BS+ 39*BT+ 44*BU+ 36*BV+ 42*BW+ 37*BX+ 30*BY+ 26*BZ+ 26*CA+ 29*CB+ 22*CC+ 21*CD+ 34*CE+ 270*CF+ 58*CG+ 18*CH+ 20*CI+ 31*CJ+ 100*CK+ 63*CL+ 120*CM+ 140*CN+ 170*CO+ 47*CP+ 47*CQ+ 55*CR+ 70*CS+ 72*CT+ 27*CU+ 72*CV+ 31*CW+ 160*CX+ 35*CY+ 47*CZ+ 71*DA+ 34*DB+ 79*DC+ 24*DD+ 21*DE+ 34*DF+ 110*DG+ 61*DH+ 70*DI+ 70*DJ+ 12*DK+ 18*DL+ 250*DM+ 87*DN+ 40*DO+ 68*DP+ 110*DQ+ 76*DR+ 100*DS+ 54*DT+ 89*DU+ 47*DV+ 31*DW+ 14*DX+ 11*DY+ 11*DZ+ 8*EA+ 120*EB+ 25*EC+ 11*ED    >= 600
problem +=  0.2*AA+ 0.2*AB+ 0.2*AC+ 0.7*AD+ 0.4*AE+ 0.5*AF+ 1*AG+ 0.3*AH+ 0.4*AI+ 0.3*AJ+ 1.8*AK+ 2.3*AL+ 0.7*AM+ 2.1*AN+ 2.8*AO+ 3.3*AP+ 2*AQ+ 0.3*AR+ 1*AS+ 0.4*AT+ 0.7*AU+ 0.1*AV+ 0.2*AW+ 1.8*AX+ 0.3*AY+ 0.9*AZ+ 1.7*BA+ 1.6*BB+ 1*BC+ 0.7*BD+ 0.2*BE+ 0.7*BF+ 0.6*BG+ 1.3*BH+ 2.4*BI+ 7.5*BJ+ 0.5*BK+ 1.1*BL+ 0.7*BM+ 2.9*BN+ 0.5*BO+ 1*BP+ 1.1*BQ+ 0.6*BR+ 1*BS+ 0.5*BT+ 1.5*BU+ 0.3*BV+ 0.5*BW+ 0.5*BX+ 0.3*BY+ 0.4*BZ+ 0.2*CA+ 0.4*CB+ 0.4*CC+ 0.3*CD+ 0.5*CE+ 1.9*CF+ 0.5*CG+ 0.2*CH+ 0.2*CI+ 0.4*CJ+ 2.3*CK+ 0.9*CL+ 1.7*CM+ 5.3*CN+ 2.7*CO+ 0.4*CP+ 0.6*CQ+ 0.5*CR+ 0.5*CS+ 0.7*CT+ 0.4*CU+ 0.5*CV+ 0.3*CW+ 0.8*CX+ 0.5*CY+ 0.8*CZ+ 1*DA+ 0.3*DB+ 0.8*DC+ 0.8*DD+ 0.4*DE+ 0.5*DF+ 2.3*DG+ 0.5*DH+ 1.7*DI+ 1.7*DJ+ 0.5*DK+ 0.3*DL+ 11*DM+ 0.4*DN+ 1.3*DO+ 0.7*DP+ 1.1*DQ+ 0.6*DR+ 0.3*DS+ 0.2*DT+ 0.3*DU+ 0.7*DV+ 0.3*DW+ 0.6*DX+ 0.1*DY+ 0.2*DZ+ 0.1*EA+ 1*EB+ 0.2*EC+ 0.2*ED    >= 6.3
problem +=  0*AA+ 0*AB+ 690*AC+ 0*AD+ 1*AE+ 0*AF+ 1*AG+ 4*AH+ 9*AI+ 20*AJ+ 170*AK+ 160*AL+ 96*AM+ 110*AN+ 260*AO+ 160*AP+ 350*AQ+ 7*AR+ 190*AS+ 220*AT+ 62*AU+ 4*AV+ 0*AW+ 140*AX+ 61*AY+ 270*AZ+ 380*BA+ 160*BB+ 440*BC+ 290*BD+ 4*BE+ 31*BF+ 2*BG+ 75*BH+ 180*BI+ 620*BJ+ 60*BK+ 170*BL+ 180*BM+ 180*BN+ 3*BO+ 59*BP+ 230*BQ+ 140*BR+ 840*BS+ 320*BT+ 360*BU+ 28*BV+ 60*BW+ 27*BX+ 8*BY+ 4*BZ+ 45*CA+ 80*CB+ 33*CC+ 17*CD+ 44*CE+ 13*CF+ 56*CG+ 0*CH+ 6*CI+ 17*CJ+ 0*CK+ 47*CL+ 35*CM+ 0*CN+ 22*CO+ 0*CP+ 2*CQ+ 0*CR+ 1*CS+ 1*CT+ 0*CU+ 1*CV+ 0*CW+ 0*CX+ 0*CY+ 2*CZ+ 0*DA+ 0*DB+ 1*DC+ 1*DD+ 0*DE+ 44*DF+ 410*DG+ 160*DH+ 880*DI+ 880*DJ+ 3*DK+ 1*DL+ 15*DM+ 0*DN+ 0*DO+ 0*DP+ 0*DQ+ 0*DR+ 0*DS+ 0*DT+ 0*DU+ 18*DV+ 0*DW+ 20*DX+ 1*DY+ 0*DZ+ 1*EA+ 24*EB+ 0*EC+ 0*ED    >= 625
problem +=  0.02*AA+ 0.03*AB+ 0.07*AC+ 0.03*AD+ 0.05*AE+ 0.1*AF+ 0.1*AG+ 0.04*AH+ 0.05*AI+ 0.05*AJ+ 0.1*AK+ 0.05*AL+ 0.03*AM+ 0.08*AN+ 0.09*AO+ 0.06*AP+ 0.11*AQ+ 0.05*AR+ 0.08*AS+ 0.06*AT+ 0.15*AU+ 0*AV+ 0.02*AW+ 0.05*AX+ 0.03*AY+ 0.04*AZ+ 0.1*BA+ 0.04*BB+ 0.1*BC+ 0.06*BD+ 0.03*BE+ 0.14*BF+ 0.06*BG+ 0.17*BH+ 0.06*BI+ 0.12*BJ+ 0.11*BK+ 0.03*BL+ 0.05*BM+ 0.16*BN+ 0.07*BO+ 0.19*BP+ 0.1*BQ+ 0.06*BR+ 0.18*BS+ 0.06*BT+ 0.1*BU+ 0.03*BV+ 0.07*BW+ 0.05*BX+ 0.05*BY+ 0.04*BZ+ 0.05*CA+ 0.07*CB+ 0.03*CC+ 0.04*CD+ 0.07*CE+ 0.3*CF+ 0.09*CG+ 0.01*CH+ 0.03*CI+ 0.05*CJ+ 0.03*CK+ 0.15*CL+ 0.39*CM+ 0.01*CN+ 0.31*CO+ 0.09*CP+ 0.11*CQ+ 0.07*CR+ 0.05*CS+ 0.13*CT+ 0.1*CU+ 0.13*CV+ 0.04*CW+ 0.19*CX+ 0.07*CY+ 0.03*CZ+ 0.08*DA+ 0.03*DB+ 0.06*DC+ 0.02*DD+ 0.02*DE+ 0.07*DF+ 0.15*DG+ 0.08*DH+ 0.13*DI+ 0.13*DJ+ 0.05*DK+ 0.02*DL+ 0.73*DM+ 0.13*DN+ 0.1*DO+ 0.07*DP+ 0.24*DQ+ 0.07*DR+ 0.06*DS+ 0.09*DT+ 0.11*DU+ 0.02*DV+ 0.03*DW+ 0.03*DX+ 0.05*DY+ 0.03*DZ+ 0.02*EA+ 0.28*EB+ 0.04*EC+ 0*ED    >= 1.4
problem +=  0.01*AA+ 0.03*AB+ 0.06*AC+ 0.02*AD+ 0.11*AE+ 0.01*AF+ 0.1*AG+ 0.03*AH+ 0.04*AI+ 0.03*AJ+ 0.1*AK+ 0.13*AL+ 0.07*AM+ 0.15*AN+ 0.13*AO+ 0.14*AP+ 0.2*AQ+ 0.04*AR+ 0.14*AS+ 0.1*AT+ 0.16*AU+ 0.02*AV+ 0.01*AW+ 0.13*AX+ 0.09*AY+ 0.14*AZ+ 0.16*BA+ 0.13*BB+ 0.24*BC+ 0.13*BD+ 0.03*BE+ 0.15*BF+ 0.11*BG+ 0.23*BH+ 0.13*BI+ 0.24*BJ+ 0.1*BK+ 0.07*BL+ 0.09*BM+ 0.28*BN+ 0.03*BO+ 0.23*BP+ 0.2*BQ+ 0.08*BR+ 0.42*BS+ 0.1*BT+ 0.2*BU+ 0.03*BV+ 0.06*BW+ 0.05*BX+ 0.05*BY+ 0.04*BZ+ 0.02*CA+ 0.05*CB+ 0.03*CC+ 0.03*CD+ 0.07*CE+ 0.1*CF+ 0.09*CG+ 0.01*CH+ 0.03*CI+ 0.07*CJ+ 0.01*CK+ 0.11*CL+ 0.16*CM+ 0.01*CN+ 0.15*CO+ 0.03*CP+ 0.04*CQ+ 0.02*CR+ 0.03*CS+ 0.06*CT+ 0.02*CU+ 0.02*CV+ 0.01*CW+ 0.07*CX+ 0.05*CY+ 0.05*CZ+ 0.07*DA+ 0.02*DB+ 0.15*DC+ 0.02*DD+ 0.03*DE+ 0.07*DF+ 0.21*DG+ 0.13*DH+ 0.34*DI+ 0.34*DJ+ 0.05*DK+ 0.02*DL+ 0.89*DM+ 0.21*DN+ 0.1*DO+ 0.12*DP+ 0.17*DQ+ 0.28*DR+ 0.29*DS+ 0.19*DT+ 0.22*DU+ 1.09*DV+ 0.02*DW+ 0.05*DX+ 0.02*DY+ 0.02*DZ+ 0.02*EA+ 0.08*EB+ 0.05*EC+ 0*ED    >= 1.6
problem +=  0.2*AA+ 0.6*AB+ 0.7*AC+ 0.2*AD+ 0.7*AE+ 0.4*AF+ 0.5*AG+ 0.2*AH+ 0.4*AI+ 0.2*AJ+ 0.3*AK+ 0.7*AL+ 0.5*AM+ 0.7*AN+ 1*AO+ 1*AP+ 0.6*AQ+ 0.4*AR+ 0.6*AS+ 0.3*AT+ 0.8*AU+ 0.1*AV+ 0.5*AW+ 1*AX+ 0.4*AY+ 0.7*AZ+ 0.8*BA+ 1.2*BB+ 1.4*BC+ 0.6*BD+ 0*BE+ 1*BF+ 0.7*BG+ 1*BH+ 0.3*BI+ 1.2*BJ+ 0.3*BK+ 0.3*BL+ 0.9*BM+ 1.3*BN+ 0.3*BO+ 0.9*BP+ 0.5*BQ+ 0.3*BR+ 1.1*BS+ 0.4*BT+ 1*BU+ 0.2*BV+ 0.6*BW+ 0.4*BX+ 0.5*BY+ 0.6*BZ+ 0.7*CA+ 0.8*CB+ 0.6*CC+ 1*CD+ 1.4*CE+ 2*CF+ 0.8*CG+ 0.4*CH+ 0.2*CI+ 0.3*CJ+ 0.3*CK+ 0.8*CL+ 2.7*CM+ 0.2*CN+ 1.6*CO+ 1.5*CP+ 0.8*CQ+ 1*CR+ 0.7*CS+ 0.7*CT+ 0.4*CU+ 0.5*CV+ 0.1*CW+ 0.7*CX+ 2.1*CY+ 0.8*CZ+ 0.7*DA+ 0.1*DB+ 0.6*DC+ 0.5*DD+ 0.3*DE+ 1.4*DF+ 1.1*DG+ 1.3*DH+ 1*DI+ 1*DJ+ 0.4*DK+ 0.1*DL+ 3.8*DM+ 3.4*DN+ 8*DO+ 5.3*DP+ 6.8*DQ+ 5.1*DR+ 3*DS+ 5*DT+ 6.1*DU+ 0.8*DV+ 0.5*DW+ 0.4*DX+ 0.2*DY+ 0.2*DZ+ 0.1*EA+ 1.2*EB+ 0.3*EC+ 0*ED    >= 15
problem +=  11*AA+ 18*AB+ 6*AC+ 1*AD+ 10*AE+ 48*AF+ 73*AG+ 41*AH+ 47*AI+ 5*AJ+ 17*AK+ 88*AL+ 35*AM+ 55*AN+ 39*AO+ 47*AP+ 60*AQ+ 14*AR+ 44*AS+ 37*AT+ 26*AU+ 2*AV+ 4*AW+ 22*AX+ 8*AY+ 13*AZ+ 19*BA+ 20*BB+ 41*BC+ 19*BD+ 7*BE+ 15*BF+ 81*BG+ 140*BH+ 14*BI+ 120*BJ+ 45*BK+ 24*BL+ 31*BM+ 130*BN+ 68*BO+ 160*BP+ 26*BQ+ 7*BR+ 65*BS+ 13*BT+ 19*BU+ 14*BV+ 16*BW+ 20*BX+ 4*BY+ 6*BZ+ 15*CA+ 32*CB+ 76*CC+ 150*CD+ 57*CE+ 0*CF+ 11*CG+ 39*CH+ 8*CI+ 76*CJ+ 0*CK+ 60*CL+ 19*CM+ 0*CN+ 27*CO+ 28*CP+ 29*CQ+ 6*CR+ 6*CS+ 7*CT+ 6*CU+ 5*CV+ 7*CW+ 12*CX+ 23*CY+ 21*CZ+ 9*DA+ 7*DB+ 75*DC+ 1*DD+ 3*DE+ 57*DF+ 67*DG+ 47*DH+ 26*DI+ 26*DJ+ 2*DK+ 1*DL+ 10*DM+ 0*DN+ 0*DO+ 0*DP+ 0*DQ+ 0*DR+ 0*DS+ 0*DT+ 0*DU+ 11*DV+ 5*DW+ 6*DX+ 40*DY+ 40*DZ+ 42*EA+ 23*EB+ 8*EC+ 0*ED    >= 100
problem +=  0*AA+ 0*AB+ 0*AC+ 0*AD+ 0*AE+ 0*AF+ 0*AG+ 0*AH+ 0*AI+ 0*AJ+ 0*AK+ 0*AL+ 0*AM+ 0*AN+ 0*AO+ 0*AP+ 0*AQ+ 2*AR+ 0*AS+ 0*AT+ 0*AU+ 0*AV+ 0*AW+ 0*AX+ 0*AY+ 0*AZ+ 0*BA+ 0*BB+ 0*BC+ 0*BD+ 0*BE+ 0*BF+ 0*BG+ 0*BH+ 0*BI+ 0*BJ+ 0*BK+ 0*BL+ 0*BM+ 0*BN+ 0*BO+ 0*BP+ 0*BQ+ 0*BR+ 0*BS+ 0*BT+ 0*BU+ 0*BV+ 0*BW+ 0*BX+ 1*BY+ 0*BZ+ 0*CA+ 0*CB+ 0*CC+ 0*CD+ 0*CE+ 0*CF+ 0*CG+ 0*CH+ 0*CI+ 0*CJ+ 0*CK+ 0*CL+ 0*CM+ 0*CN+ 0*CO+ 0*CP+ 0*CQ+ 0*CR+ 0*CS+ 0*CT+ 0*CU+ 0*CV+ 1*CW+ 0*CX+ 0*CY+ 0*CZ+ 0*DA+ 0*DB+ 0*DC+ 0*DD+ 0*DE+ 0*DF+ 0*DG+ 0*DH+ 0*DI+ 0*DJ+ 0*DK+ 0*DL+ 0*DM+ 0*DN+ 0*DO+ 1*DP+ 0*DQ+ 0*DR+ 0*DS+ 0*DT+ 0*DU+ 0*DV+ 0*DW+ 0*DX+ 0*DY+ 0*DZ+ 0*EA+ 0*EB+ 0*EC+ 0*ED    >= 0
problem +=  1.3*AA+ 1.4*AB+ 2.4*AC+ 6.1*AD+ 2.8*AE+ 2*AF+ 8.2*AG+ 1.8*AH+ 1.6*AI+ 1.1*AJ+ 2*AK+ 2.2*AL+ 2.2*AM+ 3*AN+ 1.9*AO+ 2.3*AP+ 2.8*AQ+ 2.5*AR+ 2.5*AS+ 2.8*AT+ 3.3*AU+ 1.3*AV+ 1.4*AW+ 2.9*AX+ 2.5*AY+ 2.3*AZ+ 3.2*BA+ 2.5*BB+ 5.6*BC+ 2.7*BD+ 1.5*BE+ 1.8*BF+ 2.9*BG+ 5.1*BH+ 1.8*BI+ 6.8*BJ+ 3.8*BK+ 1.2*BL+ 1.9*BM+ 4.2*BN+ 2.8*BO+ 5.5*BP+ 2.5*BQ+ 2.2*BR+ 5.9*BS+ 2*BT+ 3.1*BU+ 1.1*BV+ 2.8*BW+ 1.3*BX+ 2.2*BY+ 2.4*BZ+ 1*CA+ 1.4*CB+ 2.3*CC+ 1.3*CD+ 3.6*CE+ 9*CF+ 5*CG+ 1.3*CH+ 1.2*CI+ 2.6*CJ+ 5.9*CK+ 3*CL+ 7.7*CM+ 5.9*CN+ 5*CO+ 8.9*CP+ 2.2*CQ+ 2.3*CR+ 2.8*CS+ 2.8*CT+ 1*CU+ 2.5*CV+ 1.5*CW+ 6.2*CX+ 20.7*CY+ 11.4*CZ+ 5.4*DA+ 1.7*DB+ 4.4*DC+ 7.4*DD+ 1.6*DE+ 3.6*DF+ 6.3*DG+ 1.9*DH+ 7.3*DI+ 7.3*DJ+ 2.1*DK+ 1.1*DL+ 29.6*DM+ 4.9*DN+ 4.7*DO+ 3.4*DP+ 3.9*DQ+ 1.9*DR+ 2*DS+ 3.5*DT+ 3.4*DU+ 3.6*DV+ 1.8*DW+ 2.5*DX+ 0.4*DY+ 0.1*DZ+ 0.1*EA+ 1.6*EB+ 1.3*EC+ 3.5*ED    >= 21
problem +=  0*AA+ 0*AB+ 0.1*AC+ 0*AD+ 0*AE+ 0.1*AF+ 0*AG+ 0*AH+ 0*AI+ 0*AJ+ 0*AK+ 0.1*AL+ 0*AM+ 0.1*AN+ 0*AO+ 0.1*AP+ 0*AQ+ 0*AR+ 0*AS+ 0*AT+ 0*AU+ 0.1*AV+ 0*AW+ 0*AX+ 0*AY+ 0*AZ+ 0.2*BA+ 0*BB+ 0.2*BC+ 0*BD+ 0.1*BE+ 0*BF+ 0*BG+ 0*BH+ 0*BI+ 0*BJ+ 0*BK+ 0.1*BL+ 0.1*BM+ 0*BN+ 0*BO+ 0*BP+ 0.1*BQ+ 0.1*BR+ 0*BS+ 0*BT+ 0.1*BU+ 0*BV+ 0*BW+ 0*BX+ 0*BY+ 0*BZ+ 0*CA+ 0*CB+ 0*CC+ 0*CD+ 0*CE+ 0*CF+ 0*CG+ 0*CH+ 0*CI+ 0*CJ+ 0.3*CK+ 0*CL+ 0*CM+ 0.4*CN+ 0*CO+ 0*CP+ 0*CQ+ 0*CR+ 0*CS+ 0*CT+ 0*CU+ 0*CV+ 0*CW+ 0*CX+ 0*CY+ 0*CZ+ 0*DA+ 0*DB+ 0.1*DC+ 0*DD+ 0*DE+ 0*DF+ 0*DG+ 0*DH+ 0*DI+ 0*DJ+ 0*DK+ 0*DL+ 0*DM+ 0*DN+ 0*DO+ 0*DP+ 0*DQ+ 0*DR+ 0*DS+ 0*DT+ 0*DU+ 0*DV+ 0*DW+ 0*DX+ 0*DY+ 0*DZ+ 0*EA+ 0*EB+ 0*EC+ 0.9*ED    >= 5


# 解く
status = problem.solve()
print(pulp.LpStatus[status])

# 結果表示
print(" だいこん :",  AA.value())
print(" かぶ :",  AB.value())
print(" にんじん :",  AC.value())
print(" ごぼう :",  AD.value())
print(" たけのこ :",  AE.value())
print(" れんこん :",  AF.value())
print(" ラディシュ :",  AG.value())
print(" キャベツ :",  AH.value())
print(" グリーンボール :",  AI.value())
print(" レタス :",  AJ.value())
print(" サニーレタス :",  AK.value())
print(" はくさい :",  AL.value())
print(" さんとうさい :",  AM.value())
print(" みず菜 :",  AN.value())
print(" こまつな :",  AO.value())
print(" つまみな :",  AP.value())
print(" ほうれんそう :",  AQ.value())
print(" ねぎ :",  AR.value())
print(" こねぎ :",  AS.value())
print(" わけぎ :",  AT.value())
print(" あさつき :",  AU.value())
print(" ふき :",  AV.value())
print(" うど :",  AW.value())
print(" 根みつば :",  AX.value())
print(" 切みつば :",  AY.value())
print(" 糸みつば :",  AZ.value())
print(" しゅんぎく :",  BA.value())
print(" せり :",  BB.value())
print(" あしたば :",  BC.value())
print(" にら :",  BD.value())
print(" セルリー :",  BE.value())
print(" アスパラガス :",  BF.value())
print(" カリフラワー :",  BG.value())
print(" ブロッコリー :",  BH.value())
print(" サラダな :",  BI.value())
print(" パセリ :",  BJ.value())
print(" にんにくの芽 :",  BK.value())
print(" チンゲンサイ :",  BL.value())
print(" タアサイ :",  BM.value())
print(" なのはな :",  BN.value())
print(" レッドキャベツ :",  BO.value())
print(" メキャベツ :",  BP.value())
print(" クレソン :",  BQ.value())
print(" エンダイブ :",  BR.value())
print(" モロヘイヤ :",  BS.value())
print(" サンチェ :",  BT.value())
print(" えん菜 :",  BU.value())
print(" きゅうり :",  BV.value())
print(" かぼちゃ :",  BW.value())
print(" ズッキーニ :",  BX.value())
print(" なす :",  BY.value())
print(" べいなす :",  BZ.value())
print(" トマト :",  CA.value())
print(" ミニトマト :",  CB.value())
print(" ピーマン :",  CC.value())
print(" パプリカ :",  CD.value())
print(" ししとう :",  CE.value())
print(" とうもろこし :",  CF.value())
print(" オクラ :",  CG.value())
print(" とうがん :",  CH.value())
print(" しろうり :",  CI.value())
print(" レイシ(にがうり) :",  CJ.value())
print(" いんげん :",  CK.value())
print(" さやえんどう :",  CL.value())
print(" ピース :",  CM.value())
print(" そらまめ :",  CN.value())
print(" えだまめ :",  CO.value())
print(" じゃがいも :",  CP.value())
print(" かんしょ :",  CQ.value())
print(" さといも :",  CR.value())
print(" 京いも :",  CS.value())
print(" やつがしら :",  CT.value())
print(" ながいも :",  CU.value())
print(" やまといも :",  CV.value())
print(" たまねぎ :",  CW.value())
print(" にんにく :",  CX.value())
print(" らっきょう :",  CY.value())
print(" エシャレット :",  CZ.value())
print(" ゆりね :",  DA.value())
print(" アーリレット :",  DB.value())
print(" わさび :",  DC.value())
print(" 根しょうが :",  DD.value())
print(" 葉しょうが :",  DE.value())
print(" とうがらし :",  DF.value())
print(" たで :",  DG.value())
print(" かいわれ :",  DH.value())
print(" しそ :",  DI.value())
print(" おおば :",  DJ.value())
print(" みょうが :",  DK.value())
print(" みょうがたけ :",  DL.value())
print(" 食用菊 :",  DM.value())
print(" なましいたけ :",  DN.value())
print(" まつたけ :",  DO.value())
print(" なめこ :",  DP.value())
print(" えのきだけ :",  DQ.value())
print(" しめじ :",  DR.value())
print(" マッシュルーム :",  DS.value())
print(" まいたけ :",  DT.value())
print(" エリンギだけ :",  DU.value())
print(" わらび :",  DV.value())
print(" 山うど :",  DW.value())
print(" うめ :",  DX.value())
print(" ゆず :",  DY.value())
print(" すだち :",  DZ.value())
print(" かぼす :",  EA.value())
print(" ぎんなん :",  EB.value())
print(" まめもやし :",  EC.value())
print(" しなちく :",  ED.value())

#結果
さあ計算しましょう。いつもこの瞬間はワクワクします。
console1.jpg

0.01秒で解けました!早い!最適化界の金メダルや!

条件を満たす組み合わせは存在するようです!野菜はどこでも手に入るので、ベジタリアンとして生きていけるかもしれません!

マイスーパーコンピューターがはじき出した野菜の種類は3種類。3種類だけ食べれば健康になれるようです。すげー。以下がその野菜です!

##はくさい(1束半)
なるほど、まずははくさいですね。栄養豊富だし安いですものね。
hakusai.jpg

##とうもろこし(176本)
粒で計13.6kg食べます。本数換算で176本。まー三食に分ければ食べられるんじゃないですか?
morokoshis.jpg

そして・・・

##しなちく(5439個)
sinachikusb.jpg
しなちく13.6kg分です。__やばい、竹、逃げて!__日本中の竹林がなくなっちゃう!

しなちくは野菜か?という疑問はありますが、東京都中央卸売市場で青果として扱っている中に含まれているのでこの記事では野菜として認定します!

この組み合わせによって以下の通り、一日必要な栄養素を満たす極めて健康的な栄養を摂取することができます。

|栄養素|摂取量|
|:---|:---:|--:|
|エネルギー (kcal)|4871|
|たんぱく質 (g)|134|
|脂質 (g)|75|
|炭水化物 (g)|1016|
|ナトリウム (mg)|5000|
|カリウム (mg)|4931|
|カルシウム (mg)|738|
|リン (mg)|3928|
|鉄 (mg)|36|
|ビタミンA (μg)|663|
|ビタミンB1 (mg)|4.2|
|ビタミンB2 (mg)|1.8|
|ナイアシン (mg)|29|
|ビタミンC (mg)|267|
|コレステロール (mg)|0|
|食物繊維 (g)|176|
|食塩相当量 (g)|12.5|

そして価格ですが、合計で13970円となります。安くないって?そんなこと関係ない!栄養は絶対です!(言い切る)

#しなちくの王将、はじまるよー
いかがでしたか?とうもろこし、しなちく。これが健康の秘訣です!完全食です。しなちくポップコーンとかうまそうじゃないですかー。最高!おいしくって体にいい!カロリーの高さなんて気にしない気にしない!

ところで、私の当初の予想ではもやしが選ばれると考えましたが、結果は選外でした。選ばれたはくさいと比べると単位あたりの価格が高く、とうもろこしと比べるとエネルギー、しなちくと比べるとナトリウムが低いのが仇となったようです。

さあ、今日から一日シナチク5439本で健康に!早くスーパーにいかないと売り切れますよ!業者だと疑われないように気を付けて(笑)。

##出典
元ブログからプログラミングを主題とするように著者自身がコードを加筆

(2021/8/16訂正)
とうもろこしの13.6kgは合っていますが、本数換算では88本ではなく176本でした。廃棄部分を除外してしまったためです。訂正しておわびいたします。

37
10
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
37
10

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?