2
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Graph Convolutional Networks を学習するための準備

Posted at

内容

  • Graph Convolutional Networks を学ぶための準備。
  • 簡単な具体例で NetworkX、PageRank、Poincaré Embeddings、 DeepWalk に慣れる。

NetworkX

import matplotlib.pyplot as plt
%matplotlib inline

import networkx as nx

G = nx.karate_club_graph()

# グラフの特徴量の確認
print(G)
print(nx.number_of_nodes(G))
print(G.number_of_edges())
print(nx.nodes(G))
print(G.nodes)
print(G.node[0])
print(G.node[30])
print(G.edges)
print(G.adj)
print(G.adj[0])
print(G.degree[0])
print(list(G.neighbors(0)))

# 可視化
pos = nx.spring_layout(G)

color = []
for node in G.nodes:
    if G.node[node]['club'] == 'Mr. Hi':
        color.append('r')
    elif G.node[node]['club'] == 'Officer':
        color.append('b')
    
plt.figure(figsize=(5, 5))
#nx.draw(G, pos=pos, node_size=200, node_color=color, with_labels=True)
nx.draw_networkx(G, pos=pos, node_size=200, node_color=color, with_labels=True)

image.png

# 各行列の確認
nx.adjacency_matrix(G).todense()

nx.laplacian_matrix(G).todense()

PageRangk

pr = nx.pagerank(G)

plt.figure(figsize=(5, 5))
nx.draw_networkx(G, pos, node_size=200, with_labels=True,
                 node_color=list(pr.values()), cmap=plt.cm.Reds)

image.png

Poincaré Embeddings

import numpy as np

from gensim.models.poincare import PoincareModel, PoincareRelations
from gensim.viz.poincare import poincare_2d_visualization

relations = []
for edge in G.edges:
    n0 = edge[0]
    n1 = edge[1]
    if G.degree[n0] > G.degree[n1]:
        relations.append((str(n1), str(n0)))
    elif G.degree[n1] > G.degree[n0]:
        relations.append((str(n0), str(n1)))
    else:
        relations.append((str(n0), str(n1)))
        relations.append((str(n1), str(n0))) 
    
model = PoincareModel(relations, size=2, negative=2, burn_in=10, seed=1)

#print(model.kv.vocab.keys())

# 学習
model.train(epochs=200)

#print(model.kv.norm('0'))
#print(model.kv.norm('11'))
#print(model.kv.norm('8'))
#print(model.kv.norm('9'))

# 可視化
relations_set = set(relations)
figure_title = ''
vis = poincare_2d_visualization(model, relations_set, figure_title, num_nodes=None)

x = vis['data'][1]['x']
y = vis['data'][1]['y']
text = vis['data'][1]['text']

color = []
for i, _ in enumerate(x):
    if G.node[int(text[i])]['club'] == 'Mr. Hi':
        color.append('r')
    elif G.node[int(text[i])]['club'] == 'Officer':
        color.append('b')

plt.figure(figsize=(5, 5))
plt.scatter(x, y, c=color)
for i, _ in enumerate(x):
    plt.text(x[i], y[i], text[i])
plt.xticks(np.arange(-1.0, 1.2, 0.2))
plt.yticks(np.arange(-1.0, 1.2, 0.2))
plt.grid('on')
plt.show()

類似度に加え、階層構造を表現。非ユークリッド空間での機械学習について学習を進めること。

image.png

DeepWalk

import random
from gensim.models import word2vec

def make_random_walks(G, num_of_walk, length_of_walk):
    walks = []
    for i in range(num_of_walk):
        walk = []
        now_node = random.choice(list(G.nodes()))
        walk.append(str(now_node))
        for j in range(length_of_walk):
            next_node = random.choice(list(G.neighbors(now_node)))
            walk.append(str(next_node))
            now_node = next_node
        walks.append(walk)
    return walks

walks = make_random_walks(G, 300, 20)

#print(np.array(walks).shape)
#print(np.array(walks)[0])

# 学習
model = word2vec.Word2Vec(walks, size=2, min_count=1, window=1, 
                          seed=1, workers=1, sg=1, hs=0, negative=5, iter=1)

#vocab = model.wv.vocab
index2word = model.wv.index2word

#print(vocab)
print(index2word)

# 可視化
x = []
y = []
text = []
color = []

for node in G.nodes():
    vector = model.wv[str(node)]
    x.append(vector[0])
    y.append(vector[1])
    text.append(str(node))
    
    if G.node[node]['club'] == 'Mr. Hi':
        color.append('r')
    elif G.node[node]['club'] == 'Officer':
        color.append('b')   

plt.figure(figsize=(5, 5))
plt.scatter(x, y, c=color)
for i, _ in enumerate(x):
    plt.text(x[i], y[i], text[i])
plt.grid('on')
plt.show()

2次元でエンコーディング。よい結果ではない理由の考察をすること。

image.png

2
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?