やること
二次元配列の解像度を下げる。
例
>>> a=np.arange(24).reshape((4,6))
>>> a
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
これを2*2ごとに平均値を取った以下のようにしたい。
>>> b = rebin(a, (2, 3))
>>> b
array([[ 3.5, 5.5, 7.5],
[ 15.5, 17.5, 19.5]])
回答
reshapeとmeanで頑張る。
def rebin(a, shape):
sh = shape[0],a.shape[0]//shape[0],shape[1],a.shape[1]//shape[1]
return a.reshape(sh).mean(-1).mean(1)
具体的な数字で書くと以下
>>> import numpy as np
>>> a = np.arange(24).reshape((4,6))
>>> a
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
>>> a.reshape((2,a.shape[0]//2,3,-1)).mean(axis=3).mean(1)
array([[ 3.5, 5.5, 7.5],
[ 15.5, 17.5, 19.5]])
多次元バージョンは以下
def bin_ndarray(ndarray, new_shape, operation='sum'):
"""
Bins an ndarray in all axes based on the target shape, by summing or
averaging.
Number of output dimensions must match number of input dimensions and
new axes must divide old ones.
Example
-------
>>> m = np.arange(0,100,1).reshape((10,10))
>>> n = bin_ndarray(m, new_shape=(5,5), operation='sum')
>>> print(n)
[[ 22 30 38 46 54]
[102 110 118 126 134]
[182 190 198 206 214]
[262 270 278 286 294]
[342 350 358 366 374]]
"""
operation = operation.lower()
if not operation in ['sum', 'mean']:
raise ValueError("Operation not supported.")
if ndarray.ndim != len(new_shape):
raise ValueError("Shape mismatch: {} -> {}".format(ndarray.shape,
new_shape))
compression_pairs = [(d, c//d) for d,c in zip(new_shape,
ndarray.shape)]
flattened = [l for p in compression_pairs for l in p]
ndarray = ndarray.reshape(flattened)
for i in range(len(new_shape)):
op = getattr(ndarray, operation)
ndarray = op(-1*(i+1))
return ndarray
参考