Help us understand the problem. What is going on with this article?

DeepMimicのビルド

2018-11-26_08-27-24.gif

動作確認環境

  • Windows10 Pro
  • CPU: Intel Core i7-4790S @ 3.20 GHz
  • RAM: 32.0 GB
  • Arc: x64 based
  • グラフィックは以下画像参照

nvcplui_2018-11-26_02-58-40.png

各種プログラムのダウンロード

bullet3 ビルドしとく

cd bullet-3.2.8
mkdir build
cd build
cmake .. -G "Visual Studio 15 Win64"
sln開いてReleaseでビルド

DeepMimicのビルド

  • DeepMimic\DeepMimicCore\DeepMimicCore.slnひらく
  • PYTHON_INCLUDE, PYTHON_LIB, SWIG_DIRは適切に設定しとく。インクルードディレクトリ/ライブラリディレクトリをいじってもOK.DeepMimicCore.vcxprojをいじってもいいし
    • 僕はこれがちゃんと動いてるかわからなかったので、slnを開くbatを作成しましした
set PYTHON_INCLUDE=C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python36_64\include
set PYTHON_LIB=C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python36_64\libs
set SWIG_DIR=C:\Users\takanori\Desktop\DeepMimic\swigwin\bin
start DeepMimicCore.sln
  • 設定がRelease_Swig x64であることを確認

各種パス設定

image.png

VC++ディレクトリ>インクルードディレクトリ

  • C:\Users\takanori\Desktop\DeepMimic\glew-2.1.0\include
  • C:\Users\takanori\Desktop\DeepMimic\freeglut-MSVC-3.0.0-2.mp\freeglut\include
  • C:\Users\takanori\AppData\Local\Programs\Python\Python35\include
  • C:\Users\takanori\Desktop\DeepMimic\eigen-eigen-b3f3d4950030.tar\eigen-eigen-b3f3d4950030
  • C:\Users\takanori\Desktop\DeepMimic\bullet3-2.87\src

VC++ディレクトリ>ライブラリディレクトリ

  • C:\Users\takanori\Desktop\DeepMimic\bullet3-2.87\build\lib\Debug
  • C:\Users\takanori\Desktop\DeepMimic\glew-2.1.0\lib\Release\x64
  • C:\Users\takanori\Desktop\DeepMimic\freeglut-MSVC-3.0.0-2.mp\freeglut\lib\x64
  • C:\Users\takanori\AppData\Local\Programs\Python\Python35\lib

MathUtil.hの適当な所にM_PIのdefine追加しとく

https://github.com/xbpeng/DeepMimic/issues/17

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

ビルドする

C:\Users\takanori\Desktop\DeepMimic\DeepMimicCoreにDeepMimicCore.py,_DeepMimicCore.pydができあがる

動作確認

cd ..
python DeepMimic.py --arg_file args\kin_char_args.txt

ImportError: DLL load failedがでるときは必要なdllがちゃんと配置されてるか確認(glew32,freeglut,glut32)

課題

これをバッチ処理できない…?か?

Why do not you register as a user and use Qiita more conveniently?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away