4
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

回帰分析を行う際の曜日と休日のダミー変数

Posted at

回帰分析を行う際の{曜日、休日、祝日}など、人の行動に関与するダミー変数を作成したので共有する。

以下画像はデータ例
image.png

以下ソースコード

.py
import numpy as np
import pandas as df
import sys
from datetime import *
from time import *
import csv

# 祝日のデータを読み込む
def import_Pholiday():
	get_data = []

	#祝日データ読み込み先のパス
	path = './import_data/holiday_data.csv'
	with open(path,'r',encoding="utf-8_sig") as f:
		reader = csv.reader(f)
		for row in reader:
			get_data.append(row)

	return get_data

# csv出力先
def write_csv(data):
	# ソースと同じディレクトリにsome.csvとして書き出す
	with open('some.csv', 'w') as f:
		writer = csv.writer(f, lineterminator='\n')
		for i in range(0,len(data)):
			writer.writerow(data[i])

def main():
	#作成するトレンド日数
	trendDay = 1860

	# [日付,月,火,水,木,金,土,日,祝日,祝日の名前,休]
	trend = [[]]
	arr = ["日付","","","","","","","","祝日","祝日の名前","休日","年末年始"]

	# 今日の日付を選択
	day_now = datetime.today()

	ph_day = import_Pholiday()

	for i in range(len(ph_day)):
		ph_day[i][1] = datetime.strptime(ph_day[i][1], '%Y/%m/%d')
		ph_day[i][1] = datetime.strftime(ph_day[i][1], '%Y%m%d')

	# 日付のフォーマット型を整形
	first_day = day_now.replace(day=1)
	day = datetime.strftime(first_day, '%Y%m%d')
	print(day)

	trend[0] =arr

	# 各日にちのトレンドデータを作成
	for i in range(0,trendDay):
		trend.append([0]*12)
		first_day = first_day - timedelta(days=1)
		day = datetime.strftime(first_day, '%Y%m%d')
		trend[i][0] = day

		if first_day.weekday() == 0:
			trend[i][1] = 1
		elif first_day.weekday() == 1:
			trend[i][2] = 1
		elif first_day.weekday() == 2:
			trend[i][3] = 1
		elif first_day.weekday() == 3:
			trend[i][4] = 1
		elif first_day.weekday() == 4:
			trend[i][5] = 1
		elif first_day.weekday() == 5:
			trend[i][6] = 1
		elif first_day.weekday() == 6:
			trend[i][7] = 1

		if str(day) in str(ph_day):
			trend[i][8] = 1
			for j in range(len(ph_day)):
				if str(day) == str(ph_day[j][1]):
					trend[i][9] = str(ph_day[j][3])

		if str(trend[i][0]).endswith('1231') or str(trend[i][0]).endswith('1231') or str(trend[i][0]).endswith('0101') or str(trend[i][0]).endswith('0102') or str(trend[i][0]).endswith('0103'):
			trend[i][11] = 1

		if trend[i][6] == 1 or trend[i][7] == 1 or trend[i][8] == 1 or trend[i][11]:
			trend[i][10] = 1

		#print(trend[i])

	#print(trend[0])
	#print(trend[1])
	write_csv(trend)

if __name__ == '__main__':
	main()

githubに作成したcsvなども置いてあります。
https://github.com/Baya-Non/-Linear_regression_trend

4
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?