23
21

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

DBSCAN実践とアルゴリズム

Last updated at Posted at 2017-03-17

DBSCANは"密度ベース"のクラスタリング手法である。

図2.png

DBSCANが提案された論文は

Martin Ester,Hans-Peter Kriegel,Jorg Sander,Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proccrdings of 2ndInternational Conference on Knowledge Discovery and Data Mining (KDD-96),1996.

で、scikit-learnにもこの論文のアルゴリズムが提案されている。

DBSCANのアルゴリズムはWikiには以下のように記載されている。

DBSCAN requires two parameters: ε (eps) and the minimum number of points required to form a dense region[a] (minPts). It starts with an arbitrary starting point that has not been visited. This point's ε-neighborhood is retrieved, and if it contains sufficiently many points........ (http://en.wikipedia.org/wiki/DBSCAN)

これを私なりに解釈してみる。

半径εの中に点がいくつあるかでその領域をクラスタとして判断している.さらに近傍の密度がある閾値を超えている限り,クラスタを成長させ続けることができるので,近傍付近全体を領域としてみなすことができる

図にしてみるとこんな感じ。

![図.png](https://qiita-image-store.s3.amazonaws.com/0/109578/c1f8377d-ab4f-64e6-3678-05c66faea3e0.png)

この動画を見ればDBSCANの事がよーーく分かる(と思います)。
http://www.youtube.com/watch?v=5E097ZLE9Sg

メリット
①Mean-shiftとは違い、クラスタ数を設定しなくてもよい
②クラスタが再帰的に計算されるので、outlierに対して頑健である。
デメリット
①計算コストが高く、リアルタイム性のアプリケーションには実装しにくい

最後にソースコードを記載する。
epsで探索する範囲(ある点Xから点がいくつあるか)、min_samplesでepsの中にいくつ点が存在していたらクラスタだとみなすかを決める。

    def (eps,min_samples):
        db = DBSCAN(eps, min_samples).fit(point_data)
        core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
        core_samples_mask[db.core_sample_indices_] = True
        labels = db.labels_
        n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

        print('Estimated number of clusters: %d' % n_clusters_)
23
21
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
23
21

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?