第四回 オフラインリアルタイムどう書くに行ってきました。お題はテトロミノと呼ばれる図形の認識。
Haskellで書きました。与えられたパターンの回転・鏡像に対してすべてマッチングをかけるというもの。図形を変換した後で最も左上のブロックを原点に寄せています。
制限時間(1時間)に間に合いました。
tetroid.hs
module Main where
import Control.Monad (mapM_)
import Control.Arrow ((***))
import Data.List (find, sort)
import Data.Maybe (maybe)
import Test.HUnit (Test(..), runTestTT, (~=?))
findTetroid :: [Int] -> Char
findTetroid = match . normalize . toCoord
toCoord :: [Int] -> [(Int, Int)]
toCoord = map (`divMod` 10)
normalize :: [(Int, Int)] -> [(Int, Int)]
normalize = toRelative . sort
toRelative :: [(Int, Int)] -> [(Int, Int)]
toRelative [] = error "toRelative: logic error"
toRelative ((x, y) : ps) = (0, 0) : map (subtract x *** subtract y) ps
match :: [(Int, Int)] -> Char
match ps = maybe '-' snd $ find (matchOne ps . fst) patterns
matchOne :: [(Int, Int)] -> [(Int, Int)] -> Bool
matchOne lhs rhs = any (== lhs)
[ rhs
, rotate rhs
, rotate $ rotate rhs
, rotate $ rotate $ rotate rhs
, mirror rhs
, mirror $ rotate rhs
, mirror $ rotate $ rotate rhs
, mirror $ rotate $ rotate $ rotate rhs
]
rotate :: [(Int, Int)] -> [(Int, Int)]
rotate = normalize . map (\(x, y) -> (y, -x))
mirror :: [(Int, Int)] -> [(Int, Int)]
mirror = normalize . map (\(x, y) -> (y, x))
patterns :: [([(Int, Int)], Char)]
patterns =
[ ( [ (0, 0), (0, 1), (0, 2), (1, 2) ], 'L' )
, ( [ (0, 0), (0, 1), (0, 2), (0, 3) ], 'I' )
, ( [ (0, 0), (1, 0), (1, 1), (2, 0) ], 'T' )
, ( [ (0, 0), (0, 1), (1, 0), (1, 1) ], 'O' )
, ( [ (0, 0), (0, 1), (1, 1), (1, 2) ], 'S' )
]
--------
main :: IO ()
main = print =<< runTestTT (TestList $ map toTest testdata)
toTest :: ([Int], Char) -> Test
toTest (input, expected) = expected ~=? findTetroid input
testdata :: [([Int], Char)]
testdata =
[ ([55,55,55,55], '-')
, ([07,17,06,05], 'L')
, ([21,41,31,40], 'L')
, ([62,74,73,72], 'L')
, ([84,94,74,75], 'L')
, ([48,49,57,47], 'L')
, ([69,89,79,68], 'L')
, ([90,82,91,92], 'L')
, ([13,23,03,24], 'L')
, ([24,22,25,23], 'I')
, ([51,41,21,31], 'I')
, ([64,63,62,65], 'I')
, ([49,69,59,79], 'I')
, ([12,10,21,11], 'T')
, ([89,99,79,88], 'T')
, ([32,41,43,42], 'T')
, ([27,16,36,26], 'T')
, ([68,57,58,67], 'O')
, ([72,62,61,71], 'O')
, ([25,24,15,14], 'O')
, ([43,54,53,42], 'S')
, ([95,86,76,85], 'S')
, ([72,73,84,83], 'S')
, ([42,33,32,23], 'S')
, ([66,57,67,58], 'S')
, ([63,73,52,62], 'S')
, ([76,68,77,67], 'S')
, ([12,11,22,01], 'S')
, ([05,26,06,25], '-')
, ([03,11,13,01], '-')
, ([11,20,00,21], '-')
, ([84,95,94,86], '-')
, ([36,56,45,35], '-')
, ([41,33,32,43], '-')
, ([75,94,84,95], '-')
, ([27,39,28,37], '-')
, ([45,34,54,35], '-')
, ([24,36,35,26], '-')
, ([27,27,27,27], '-')
, ([55,44,44,45], '-')
, ([70,73,71,71], '-')
, ([67,37,47,47], '-')
, ([43,45,41,42], '-')
, ([87,57,97,67], '-')
, ([49,45,46,48], '-')
, ([63,63,52,72], '-')
, ([84,86,84,95], '-')
, ([61,60,62,73], '-')
, ([59,79,69,48], '-')
, ([55,57,77,75], '-')
]
こちらはブロック同士の距離の二乗(6つ)を比較するというもの。回転や鏡像を考える必要がないぶん短くコーディングできています。このアルゴリズムは勉強会後の飲み会で鍋谷さんに教えてもらいました。
distance.hs
module Main where
import Data.Maybe (maybe)
import Data.List (find, sort)
import Test.HUnit (Test(..), runTestTT, (~=?))
findTetroid :: [Int] -> Char
findTetroid = match . toCoord
toCoord :: [Int] -> [(Int, Int)]
toCoord = map (`divMod` 10)
match :: [(Int, Int)] -> Char
match ps = maybe '-' snd $ find ((== dist) . fst) patterns
where
dist = findDist ps
findDist :: [(Int, Int)] -> [Int]
findDist = sort . map dist . combination
dist :: ((Int, Int), (Int, Int)) -> Int
dist ((x1, y1), (x2, y2)) = (x2 - x1) ^ 2 + (y2 - y1) ^ 2
combination :: [a] -> [(a,a)]
combination [] = []
combination (x:xs) = map ((,) x) xs ++ combination xs
patterns :: [([Int], Char)]
patterns =
[ ([1,1,1,1,2,2], 'O')
, ([1,1,1,2,2,4], 'T')
, ([1,1,1,2,2,5], 'S')
, ([1,1,1,2,4,5], 'L')
, ([1,1,1,4,4,9], 'I')
]
--------
-- テストコードは省略