1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

内積の公式から、加法定理を思い出す

Last updated at Posted at 2018-12-19

三角関数の定義の外側の概念である内積の公式を使う時点で、外道ではあるけども、加法定理を思い出しやすいので、時々使う。

次の公式を使う。

\langle\vec{a},\vec{b}\rangle=|\vec{a}||\vec{b}|\cos\theta

$\mathbb{R}^2$で $|\vec{a}|=|\vec{b}|=1$ を満たすとすると、言うまでもなく、こんな風になる。掛けて足すだけ。分かりやすいね。

\begin{align}
\left\langle\vec{a}=\left(\begin{array}{r}x_1 \\ y_1\end{array}\right),\vec{b}=\left(\begin{array}{r}x_2 \\ y_2\end{array}\right) \right\rangle &= |\vec{a}||\vec{b}|\cos\theta \\
x_1 x_2 + y_1 y_2 &= 1 \cdot 1 \cdot \cos \theta 
\end{align}

mathematics_0_25p.png

triangle_func_03.png

mathematics_2_25p.png
mathematics_3_25p.png
mathematics_4_25p.png

とはいえ、 加法定理の覚え方。図形でわかる公式の考え方 | アタリマエ! のサイトにあるようなやり方の方が、前提知識不要な意味で、より良いのであろう。

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?