LoginSignup
0
0

More than 3 years have passed since last update.

最小二乗法

Last updated at Posted at 2020-03-31

最小二乗法

年齢と血圧の様な2つの変数$x_i,y_i \ (i = 1,2, \cdots ,n)$ があり

$$y_i = ax_i + b$$

の様な関係がある場合、最も最適な直線の引き方は

$$ L=\displaystyle \sum_{i=1}^n [y_i - (ax_i + b)]^2$$

を最小にする $a,b$ を決める事
$L$ を $a$ と $b$ の2次関数とみなし偏微分する事で求める

\begin{align}
L & = \displaystyle \sum_{i=1}^n [y_i - (ax_i + b)]^2 \\

  & = \displaystyle \sum_{i=1}^n [y_i^2 - 2y_i(ax_i + b) + (ax_i + b)^2 ] \\

  & = \displaystyle \sum_{i=1}^n [y_i^2 - 2y_i(ax_i + b) + a^2x_i^2 + 2abx_i + b^2 ] \\

& = \displaystyle \sum_{i=1}^n y_i^2  + \displaystyle \sum_{i=1}^n [ -2y_i(ax_i + b) + a^2x_i^2 + 2abx_i + b^2 ]
\end{align}

なので

\begin{align}
\frac{ \partial L }{ \partial a } & = \displaystyle \sum_{i=1}^n ( -2y_ix_i + 2ax_i^2 + 2bx_i ) \\

 & = - 2\displaystyle \sum_{i=1}^n y_ix_i + 2a \displaystyle \sum_{i=1}^n x_i^2 + 2b \displaystyle \sum_{i=1}^n x_i = 0 \qquad \cdots (1) \\\\[1pt]

\frac{ \partial L }{ \partial b } &= \displaystyle \sum_{i=1}^n ( -2y_i + 2ax_i +2b)= 0 \\

&= - 2\displaystyle \sum_{i=1}^n y_i +2a\displaystyle \sum_{i=1}^n x_i + 2nb = 0 \qquad \cdots (2)
\end{align} 

なので

\begin{align}
  \left\{
    \begin{array}{l}
       a\displaystyle \sum_{i=1}^n x_i^2 + b\displaystyle \sum_{i=1}^n x_i = \displaystyle \sum_{i=1}^n y_ix_i  \qquad \cdots (1)' \\
       a\displaystyle \sum_{i=1}^n x_i +nb = \displaystyle \sum_{i=1}^n y_i  \qquad \cdots (2)'
    \end{array}
  \right.
\end{align} 

$(2)' $ より

\begin{align}
b &= \frac{1}{n}\displaystyle \sum_{i=1}^n y_i - \frac{a}{n} \displaystyle \sum_{i=1}^n x_i \\\\[1pt]

&= \overline{y} - a\overline{x}  \qquad \cdots (2)''
\end{align} 

$(2)'' $ を$(1)'$ に代入し

\begin{align}
a\displaystyle \sum_{i=1}^n x_i^2 + (\overline{y} - a\overline{x})\displaystyle \sum_{i=1}^n x_i = \displaystyle \sum_{i=1}^n y_ix_i \\\\[1pt]

a\displaystyle \sum_{i=1}^n x_i^2 + \overline{y}\displaystyle \sum_{i=1}^n x_i - a\overline{x}\displaystyle \sum_{i=1}^n x_i = \displaystyle \sum_{i=1}^n y_ix_i \\\\[1pt]

a\displaystyle \sum_{i=1}^n x_i^2 + \overline{y}\displaystyle \sum_{i=1}^n x_i - an\overline{x}\frac{1}{n}\displaystyle \sum_{i=1}^n x_i = \displaystyle \sum_{i=1}^n y_ix_i \\\\[1pt]

a[ \displaystyle \sum_{i=1}^n x_i^2 -n\overline{x}^2] + \overline{y}\displaystyle \sum_{i=1}^n x_i = \displaystyle \sum_{i=1}^n y_ix_i

\end{align} 

故に

\begin{align}
a &= \frac{\displaystyle \sum_{i=1}^n y_ix_i - \overline{y}\displaystyle \sum_{i=1}^n x_i }{\displaystyle \sum_{i=1}^n x_i^2 -n\overline{x}^2} \\\\[1pt]

&= \frac{\displaystyle \sum_{i=1}^n y_ix_i - n \overline{y} \cdot \overline{x}}
{\displaystyle \sum_{i=1}^n x_i^2 -n\overline{x}^2} \qquad \cdots (1)''
\end{align} 

もう一度まとめると $y_i = ax_i + b$ を最適化する $a,b$ は

\begin{align}
  \left\{
    \begin{array}{l}
       a = \frac{\displaystyle \sum_{i=1}^n y_ix_i - n \overline{y} \cdot \overline{x}}
{\displaystyle \sum_{i=1}^n x_i^2 -n\overline{x}^2} \qquad \cdots (1)''  \\\\[1pt]
       b = \overline{y} - a\overline{x}  \qquad \cdots (2)''
    \end{array}
  \right.
\end{align} 

であり、点$(\overline{x},\overline{y})$ を通る、傾き$b$の直線

$$y - \overline{y} = b(x- \overline{x})$$

と表現できる

参照

統計学入門

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0