3
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

deeplearningを試す(caffe deepdream)

Last updated at Posted at 2016-01-16

deepdreamを動かすところまでを記載します

CUDA7.0インストール

open cvなどをインストール

$ brew install --fresh -vd snappy leveldb gflags glog szip lmdb
$ brew tap homebrew/science
$ brew install hdf5 opencv
$ brew install --build-from-source --with-python --fresh -vd protobuf
$ brew install --build-from-source --fresh -vd boost boost-python
$ brew install openblas

pythonのインストール

今回はpyenvにanacondaを入れます
(anacondaを推奨しているみたい)

$ brew install pyenv
$ pyenv install anaconda-2.1.0
$ pyenv local anaconda-2.1.0
$ pyenv global anaconda-2.1.0

caffeをクローン

$ cd ~/
$ git clone https://github.com/BVLC/caffe.git

Makefile.configのコピー

$ cd caffe
$ pip install -r python/requirements.txt
$ cp Makefile.config.example Makefile.config

Makefile.configの編集

以下の変数のコメントアウトを外して修正してください
各パスは環境に合わせて書き換えてください

Makefile.config
BLAS := open
BLAS_INCLUDE := /usr/local/Cellar/openblas/0.2.15/include
BLAS_LIB := /usr/local/Cellar/openblas/0.2.15/lib

ANACONDA_HOME := /Users/username/.pyenv/versions/anaconda-2.1.0
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
                 $(ANACONDA_HOME)/include/python2.7 \
                 $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \


# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := $(ANACONDA_HOME)/lib

モデルのダウンロード

以下のリンクからダウンロードして、~/caffe/models/bvlc_googlenet/ に保存
bvlc_googlenet.caffemodel

.bashrcにパスを追加

export DYLD_FALLBACK_LIBRARY_PATH=/usr/local/cuda/lib:~/.pyenv/versions/anaconda-2.1.0/lib
export PYTHONPATH=~/caffe/python/:$PYTHONPATH

source ~/.bashrc で反映

コンパイル

$ make clean
$ make all -j4
$ make test
$ make runtest
$ make pycaffe

以下のコマンドでエラーが出なければ、caffeのインストールは成功

$ python 
>>> import caffe

ipython notebookのインストール

(deepdreamのソースコードはipython notebook形式になっている)

$ pip install "ipython[notebook]"

deepdreamのクローン

$ git clone git@github.com:google/deepdream.git

ipython notebookを実行

$ cd deepdream
$ ipython trust dream.ipynb
$ ipython notebook

うまくいくと、ブラウザ上でnotebookがたちあがるので、dream.ipynbを選択して立ち上がった画面から再生ボタンを押して、ソースコードごとに挙動を確認できます。
進めていくと、frames/配下に生成された画像が保存されます。

なお、pythonで実行する場合は以下のソースで実行できます

from cStringIO import StringIO
import numpy as np
import scipy.ndimage as nd
import PIL.Image
from IPython.display import clear_output, Image, display
from google.protobuf import text_format

import caffe

def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))

model_path = '../caffe/models/bvlc_googlenet/' # substitute your path here
net_fn   = model_path + 'deploy.prototxt'
param_fn = model_path + 'bvlc_googlenet.caffemodel'


# Patching model to be able to compute gradients.
# Note that you can also manually add "force_backward: true" line to "deploy.prototxt".
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
open('tmp.prototxt', 'w').write(str(model))

net = caffe.Classifier('tmp.prototxt', param_fn,
                       mean = np.float32([104.0, 116.0, 122.0]), # ImageNet mean, training set dependent
                       channel_swap = (2,1,0)) # the reference model has channels in BGR order instead of RGB



# a couple of utility functions for converting to and from Caffe's input image layout
def preprocess(net, img):
    return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data']
def deprocess(net, img):
    return np.dstack((img + net.transformer.mean['data'])[::-1])

def objective_L2(dst):
    dst.diff[:] = dst.data

def make_step(net, step_size=1.5, end='inception_4c/output',
              jitter=32, clip=True, objective=objective_L2):
    '''Basic gradient ascent step.'''

    src = net.blobs['data'] # input image is stored in Net's 'data' blob
    dst = net.blobs[end]

    ox, oy = np.random.randint(-jitter, jitter+1, 2)
    src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply jitter shift

    net.forward(end=end)
    objective(dst)  # specify the optimization objective
    net.backward(start=end)
    g = src.diff[0]
    # apply normalized ascent step to the input image
    src.data[:] += step_size/np.abs(g).mean() * g

    src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image

    if clip:
        bias = net.transformer.mean['data']
        src.data[:] = np.clip(src.data, -bias, 255-bias)


def deepdream(net, base_img, iter_n=10, octave_n=4, octave_scale=1.4,
              end='inception_4c/output', clip=True, **step_params):
    # prepare base images for all octaves
    octaves = [preprocess(net, base_img)]
    for i in xrange(octave_n-1):
        octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))

    src = net.blobs['data']
    detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
    for octave, octave_base in enumerate(octaves[::-1]):
        h, w = octave_base.shape[-2:]
        if octave > 0:
            # upscale details from the previous octave
            h1, w1 = detail.shape[-2:]
            detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)

        src.reshape(1,3,h,w) # resize the network's input image size
        src.data[0] = octave_base+detail
        for i in xrange(iter_n):
            make_step(net, end=end, clip=clip, **step_params)

            # visualization
            vis = deprocess(net, src.data[0])
            if not clip: # adjust image contrast if clipping is disabled
                vis = vis*(255.0/np.percentile(vis, 99.98))
            showarray(vis)
            print octave, i, end, vis.shape
            clear_output(wait=True)

        # extract details produced on the current octave
        detail = src.data[0]-octave_base
        # returning the resulting image
    return deprocess(net, src.data[0])

img = np.float32(PIL.Image.open('sky1024px.jpg'))
for i in xrange(100):
    img = deepdream(net, img, end='inception_4e/pool') PIL.Image.fromarray(np.uint8(img)).save("frames/result-%03d.png" % i)

うまくいくとこんな感じ
result-000.png
result-007.png
result-060.png

finetune_flickr_styleを使うと、floating point exceptionでエラーになるので要調査

3
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?