Help us understand the problem. What is going on with this article?

量子計算についてのメモ2

量子計算についてのメモ

2019_02_18 @suharahiromichi

$$
\def\bra#1{\mathinner{\left\langle{#1}\right|}}
\def\ket#1{\mathinner{\left|{#1}\right\rangle}}
\def\braket#1#2{\mathinner{\left\langle{#1}\middle|#2\right\rangle}}
$$

superoperator (超演算子)

A^* ρ = A\cdot ρ\cdot A^\dagger

便利な公式

(A\cdot B)^* ρ = A^* (B^* ρ)

\\
\\

(A \otimes B)^* = A^* \otimes B^*

それぞれ、次から求められる。

(A \cdot B)^\dagger = B^\dagger \cdot A^\dagger
\\
(A \otimes B)^\dagger = A^\dagger \otimes B^\dagger

また、

I^* = I

cをスカラーとすると、

(c\cdot A)^* = c^2\cdot A^*
\\
A^* (c\cdot ρ) = c\cdot A^* ρ

unitary の superoperator

X^* ρ
\\=
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
ρ_{00} & ρ_{01} \\
ρ_{10} & ρ_{11} \\
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\\=
\begin{pmatrix}
ρ_{11} & ρ_{10} \\
ρ_{01} & ρ_{00} \\
\end{pmatrix}

Y^* ρ
\\=
\begin{pmatrix}
0 & -i \\
i & 0 \\
\end{pmatrix}
\begin{pmatrix}
ρ_{00} & ρ_{01} \\
ρ_{10} & ρ_{11} \\
\end{pmatrix}
\begin{pmatrix}
0 & i \\
-i & 0 \\
\end{pmatrix}
\\=
\begin{pmatrix}
-ρ_{11} & ρ_{10} \\
ρ_{01} & -ρ_{00} \\
\end{pmatrix}

Z^* ρ
\\=
\begin{pmatrix}
1 & 0 \\
0 & -1 \\
\end{pmatrix}
\begin{pmatrix}
ρ_{00} & ρ_{01} \\
ρ_{10} & ρ_{11} \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & -1 \\
\end{pmatrix}
\\=
\begin{pmatrix}
ρ_{00} & -ρ_{01} \\
-ρ_{10} & ρ_{11} \\
\end{pmatrix}

H^* ρ
\\=
\frac{1}{2}
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\begin{pmatrix}
ρ_{00} & ρ_{01} \\
ρ_{10} & ρ_{11} \\
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\\=
\frac{1}{2}
\begin{pmatrix}
ρ_{00}+ρ_{01}+ρ_{10}+ρ_{11} &
ρ_{00}-ρ_{01}+ρ_{10}-ρ_{11} \\
ρ_{00}+ρ_{01}-ρ_{10}-ρ_{11} &
ρ_{00}-ρ_{01}-ρ_{10}+ρ_{11} \\
\end{pmatrix}

CNOT の superoperator

CNOT
=
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{pmatrix}
CNOT^* ρ
\\=
CNOT\cdot
\begin{pmatrix}
ρ_{00} & ρ_{01} & ρ_{02} & ρ_{03}\\
ρ_{10} & ρ_{11} & ρ_{12} & ρ_{13}\\
ρ_{20} & ρ_{21} & ρ_{22} & ρ_{23}\\
ρ_{30} & ρ_{31} & ρ_{32} & ρ_{33}\\
\end{pmatrix}\cdot
CNOT^\dagger
\\=
\begin{pmatrix}
ρ_{00} & ρ_{01} & ρ_{02} & ρ_{03}\\
ρ_{10} & ρ_{11} & ρ_{12} & ρ_{13}\\
ρ_{20} & ρ_{21} & ρ_{22} & ρ_{23}\\
ρ_{30} & ρ_{31} & ρ_{32} & ρ_{33}\\
\end{pmatrix}

swap の superoperator

swap
=
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
swap^* ρ
\\=
swap\cdot
\begin{pmatrix}
ρ_{00} & ρ_{01} & ρ_{02} & ρ_{03}\\
ρ_{10} & ρ_{11} & ρ_{12} & ρ_{13}\\
ρ_{20} & ρ_{21} & ρ_{22} & ρ_{23}\\
ρ_{30} & ρ_{31} & ρ_{32} & ρ_{33}\\
\end{pmatrix}\cdot
swap^\dagger
\\=
\begin{pmatrix}
ρ_{00} & ρ_{01} & ρ_{02} & ρ_{03}\\
ρ_{20} & ρ_{22} & ρ_{21} & ρ_{23}\\
ρ_{10} & ρ_{12} & ρ_{11} & ρ_{13}\\
ρ_{30} & ρ_{31} & ρ_{32} & ρ_{33}\\
\end{pmatrix}

measure (計測) の superoperator

meas^* ρ
\\
=
(\ket{0}\bra{0})^* ρ
+
(\ket{1}\bra{1})^* ρ
\\=
\begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
ρ_{00} & ρ_{01} \\
ρ_{10} & ρ_{11} \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 \\
0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
ρ_{00} & ρ_{01} \\
ρ_{10} & ρ_{11} \\
\end{pmatrix}
\begin{pmatrix}
0 & 0 \\
0 & 1 \\
\end{pmatrix}
\\=
\begin{pmatrix}
ρ_{00} & 0 \\
0 & 0 \\
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 \\
0 & ρ_{11} \\
\end{pmatrix}
\\=
\begin{pmatrix}
ρ_{00} & 0 \\
0 & ρ_{11} \\
\end{pmatrix}

discard の superoperator

disc^* ρ
\\=
\ket{0}^* ρ + \ket{1}^* ρ
\\=
\begin{pmatrix}
1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
ρ_{00} & ρ_{01} \\
ρ_{10} & ρ_{11} \\
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
\end{pmatrix}
+
\begin{pmatrix}
0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
ρ_{00} & ρ_{01} \\
ρ_{10} & ρ_{11} \\
\end{pmatrix}
\begin{pmatrix}
0 \\
1 \\
\end{pmatrix}
\\=
ρ_{00} + ρ_{11}

bit-control の superoperator

Bit⊗Qubit -> Bit⊗Qubit のbit-controlは、次で定義される。

ctrl\ A
\\=
(\ket{1}\bra{1}) \otimes A + (\ket{1}\bra{1}) \otimes I
\\=
\begin{pmatrix}
0 & 0 \\
0 & 1 \\
\end{pmatrix} \otimes A
+
\begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix} \otimes I
\\=
\begin{pmatrix}
I & 0 \\
0 & A \\
\end{pmatrix}

入力にあたるBit⊗Qubit型の密度行列は、meas⊗I を通ってくるので、 

\begin{eqnarray}
((ctrl\ A)\cdot(meas \otimes I))^* (a \otimes b)
&=&
(ctrl\ A)^* ((meas \otimes I)^* (a \otimes b))
\\ &=&
(ctrl\ A)^* ((meas^* \otimes I^*)(a \otimes b))
\\ &=&
(ctrl\ A)^* (meas^* a \otimes b)
\\ &=&
(ctrl\ A)^* (\begin{pmatrix}
a_{00} & 0 \\
0 & a_{11} \\
\end{pmatrix} \otimes b)
\\ &=&
(ctrl\ A)^*\ \begin{pmatrix}
a_{00}\ (b) & 0 \\
0 & a_{11}\ (b) \\
\end{pmatrix}
\\ &=&
\begin{pmatrix}
I & 0 \\
0 & A \\
\end{pmatrix}^*\ 
\begin{pmatrix}
a_{00}\ (b) & 0 \\
0 & a_{11}\ (b) \\
\end{pmatrix}
\\ &=&
\begin{pmatrix}
I & 0 \\
0 & A \\
\end{pmatrix}
\begin{pmatrix}
a_{00}\ (b) & 0 \\
0 & a_{11}\ (b) \\
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
0 & A^\dagger \\
\end{pmatrix}
\\ &=&
\begin{pmatrix}
a_{00}\ (b) & 0 \\
0 & a_{11}\ A\ (b)\ A^\dagger \\
\end{pmatrix}
\\ &=&
\begin{pmatrix}
a_{00}\ (b) & 0 \\
0 & a_{11}\ A^* (b) \\
\end{pmatrix}
\end{eqnarray}

 例

\begin{eqnarray}
&&
disc^*\ (meas^*\ ((H\cdot X)^*\  \ket{0}\bra{0}))
\\ &=&
disc^*\ 
(meas^*\ 
((H\cdot X)^*
\begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix}
))
\\ &=&
disc^*\ 
(meas^*\ 
(H^*\ (X^*
\begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix}
)))
\\ &=&
disc^* 
(meas^*\ 
(
H^*
\begin{pmatrix}
0 & 0 \\
0 & 1 \\
\end{pmatrix}
))
\\ &=&
disc^*\ 
(meas^*\
\begin{pmatrix}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} \\
\end{pmatrix}
)
\\ &=&
disc^* 

\begin{pmatrix}
\frac{1}{2} & 0 \\
0 & \frac{1}{2} \\
\end{pmatrix}
\\ &=&
\frac{1}{2}
+
\frac{1}{2}
\\ &=&
1
\end{eqnarray}

以上

Why do not you register as a user and use Qiita more conveniently?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away