3
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Volatility変動モデルを用いたドル円相場の価格決定

Last updated at Posted at 2021-04-21

目的

ドル円相場の価格予想を行う。
以下の参考記事の再現性の確認

ソロスチャート

ジョージ ソロスの経験則により、為替相場の値動きは両国のマネタリーベース比に相関する。
(日本のマネタリーベース / アメリカのマネタリーベース)を示す。

soros_chart.png

金利平価説

代表的な為替レート決定モデルとして金利平価説が挙げられる。

(1)カバー付き金利平価説(Covered interest rate parity)

\Delta e_{t+1} = \alpha + \beta・((f_t - \epsilon_t )/ \epsilon_t) + \epsilon_t 

(2)カバー無し金利平価説(Uncovered interest rate parity)

\Delta e_{t+1} = \alpha + \beta・(i^*_t - i_t) + \epsilon_t 

[1]参照

interest_rate_parity.png

本題(Volatility変動モデル)

TARCH-Mモデル

\Delta e_{t+1} = \alpha + \beta・(i^*_t - i_t) + \gamma・\Delta(MB_t^*/MB_t) + \zeta・log(\sigma^2_t) + \epsilon_t \\
\sigma^2_t = C(1) + C(2)・\epsilon^2_{t-1} + C(3)・\epsilon^2_{t-1}・1_{\epsilon_{t-1} < 0} + C(4)・\sigma^2_{t-1}

[1]参照

尚、参考文献より以下の実験値が与えられている

係数     係数値    
α      0.814
β -1.895
γ -0.229
ζ 3.968
C(1) 0.445
C(2)   -0.080
C(3) 0.364
C(4) 0.568

a = 0.814
b = -1.895
c = -0.229
d = 3.968

c1 = 0.445
c2 = -0.080
c3 = 0.364
c4 = 0.589

b4wnoise = 0.01
b4sigma = 0.01
b4baserastion = 1.0


def nextvalue(usdcall, usdbase, jpycall, jpybase, usdjpy):
    global b4baserastion, b4wnoise

    mean = 0.0
    std = 1.0
    wnoise = random.gauss(mean, std)

    s2 = sigma2()
    delta = (jpybase/usdbase)-b4baserastion
    b4baserastion = (jpybase/usdbase)

    deltaprice = a + b*(jpycall - usdcall) + c*delta + \
        d*(math.log(s2)) + wnoise
    b4wnoise = copy.copy(wnoise)

    return usdjpy + deltaprice


def sigma2():
    global b4sigma, b4wnoise

    if b4wnoise < 0:
        sigma2 = c1 + c2*(b4wnoise ** 2) + c3*(b4wnoise ** 2) + c4*b4sigma
    else:
        sigma2 = c1 + c2*(b4wnoise ** 2) + c4*b4sigma

    b4sigma = copy.copy(sigma2)
    return sigma2


forecat2.png

参考記事

[1]

[2]

[3]

3
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?