はじめに
シングルピクセルカメラというものが研究されています。
これは、1ピクセルの光センサーを使い、照明や光路を時間変化させながらセンシングすることで、空間情報を時系列情報に変換して取り出す手法です。
ナイーブに考えると、画像の再構成するのに十分な情報を得るにはピクセル数と同じくらいのサンプリング回数が必要そうにも思えるのですが、スパース性などを考慮することで少ないサンプリング回数でも再構成が可能となります。この意味では圧縮センシングと言われたりもします。
一方で、光学素子で計算することを前提として機械学習によりその構造を決める手法も最近見かけました:
All-Optical Machine Learning Using Diffractive Deep Neural Networks
この手法は非常に面白いのですが、手元で実験するのは大変そうです。
今回は、シングルピクセルカメラと機械学習を組み合わせて、簡単なシステムで手書き文字認識をやってみたいと思います。
結果だけ見たい方へ:下のほうに動画があります
撮像系
まず思い浮かぶのはプロジェクタにより構造化光をつくる方法です。プロジェクタは所持していませんので、スマホと虫めがねでつくるプロジェクタを試してみたのですが、機構をしっかり作らないと安定感に欠けることがわかりました。
そこで少し発想を変えて、媒体が紙であることをふまえて、紙の背面から構造化光を透過させる方法でやってみることにしました。撮影対象もモノクロの手書き文字なのでなんとかなりそうです。
手元に小型のちょうどいいLCDを搭載しているM5Stackがありますので、これで作ることにします。M5StackはCPUとADコンバーターもついていて、これだけでシステムを完結できます。
センサーはフォトトランジスタNJL7502Lを使いました。電圧をかけて抵抗をつなぐだけで、照度をセンシングできます。
具体的には、こんな感じのものができました:
真ん中にぶら下がっているのがフォトトランジスタです。
線がごちゃごちゃついていますが、大半が7セグ表示のためのものです。センサー系は電源・グランド・信号の3線だけです。
モデル
まじめにキャリブレーションをするのが正攻法だと思いますが、今回は適当にやります。
構造化光は荷重が正の値をとる全結合層として表現できます。多層ネットワークなど複雑な計算をすると、シミュレーションの誤差が予想しにくそうなので、最もシンプルに出力10素子の全結合層をそのままSoftmaxに放り込みます。バイアス項があると光量に依存してしまうのでバイアス項は使わないことに注意します。
ロバストネスを狙ってノイズを加えていますが、正直効果があるかわかりません。
import keras
from keras.models import Model, Input
from keras.layers import *
import numpy as np
batch_size = 128
epochs = 50
lr = 0.001
D0 = 14*14
num_classes = 10
model_name = 'model.h5'
x_train = np.load("x_train.npy")
y_train = np.load("y_train.npy")
x_test = np.load("x_test.npy")
y_test = np.load("y_test.npy")
# background:white ,pen:black
x_train = 1 - x_train.reshape((-1,D0))/255
x_test = 1 - x_test.reshape((-1,D0))/255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
## add noise for robustness
x_train += np.random.normal(0,0.1,x_train.shape)
x_test += np.random.normal(0,0.1,x_test.shape)
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
x = Input(shape=(D0,))
h = Dense(num_classes,kernel_constraint=keras.constraints.non_neg(),use_bias=False)(x)
y = Activation("softmax")(h)
model = Model(inputs=[x],outputs=[y])
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Nadam(lr),
metrics=['accuracy'])
model.summary()
# train
checkpoint = keras.callbacks.ModelCheckpoint(model_name,save_best_only=True)
reducelr = keras.callbacks.ReduceLROnPlateau(factor=0.5,patience=8,cooldown=2,verbose=1)
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[checkpoint,reducelr])
# evaluate
model.load_weights(model_name)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
これだけの構成でも正解率は91%を超えてきます。
荷重形式の変換
M5StackのLCD描画ライブラリはRGB565形式になっているので、荷重をfloat->RGB565に変換する必要があります。
import keras
import numpy as np
import matplotlib.pyplot as plt
model = keras.models.load_model("model.h5")
N=10
w, = model.layers[1].get_weights()
w = w.T
## convert mask to RGB565 format
a = np.max(w)
if np.min(w)<0:
print("error: mask contains negative value")
exit()
w = w/a # normalize
w5 = np.clip((32*w),0,32).astype(np.uint16)
w6 = np.clip((64*w),0,64).astype(np.uint16)
w565 = 2048*w5+32*w6+w5
print("weights of 1st layer:",w565.shape)
print(w565.tolist())
## display components
# ref: https://pythonmemo.hatenablog.jp/entry/2018/04/22/204614
for i in range(N):
plt.subplot(2,5,i+1)
plt.xticks(color="None")
plt.yticks(color="None")
plt.tick_params(length=0)
plt.imshow(w[i].reshape((14,14)))
plt.show()
推論
ローテク感をだしたかったので推論結果は7セグで表示するようにしています。
なお推論ではSoftmaxをしなくても結果は変わりませんので省略しています。
#include <M5Stack.h>
#define CLS 10
const int adc_pin = 36;
const int disp_wait = 30;
const int rep = 100;
const int capture_wait_us = 100;
const int ox = 104;
const int oy = 68;
const int cell = 8;
const int len = cell * 14;
const uint16_t wmask[CLS][196] = {{0, 32, 4226, 0, 32, 2145, 0, 32, 32, 0, 0, 32, 0, 2113, 6339, 2113, 4226, 4226, 2145, 2113, 6339, 6339, 8484, 12710, 6371, 2113, 2113, 2145, 32, 0, 4258, 4226, 10565, 10597, 8484, 4226, 0, 8452, 8484, 10565, 2113, 2145, 0, 2113, 4226, 10565, 16936, 6339, 32, 4258, 0, 0, 0, 6371, 19049, 2145, 2113, 4226, 8452, 10597, 8452, 8452, 8452, 6339, 0, 0, 0, 0, 12710, 32, 32, 32, 4258, 32, 10565, 16904, 10565, 33808, 25388, 32, 0, 0, 0, 0, 2113, 2145, 0, 0, 6371, 6371, 25356, 65535, 50712, 23243, 6371, 0, 0, 4226, 2145, 4226, 0, 0, 0, 0, 35953, 2080, 42292, 19049, 2145, 0, 0, 0, 2145, 2113, 0, 0, 0, 6339, 52825, 57051, 21162, 8452, 0, 0, 0, 0, 2113, 4226, 0, 0, 0, 0, 33808, 23275, 6371, 8484, 4226, 2113, 2145, 32, 0, 6371, 2145, 2113, 0, 0, 6339, 16936, 19017, 21130, 12710, 10597, 4258, 4226, 2113, 2145, 8484, 0, 0, 0, 0, 0, 8484, 19049, 14823, 4258, 2113, 2113, 0, 2113, 4226, 4226, 10565, 10597, 8484, 12710, 14791, 12678, 6339, 2113, 2145, 2145, 2145, 32, 0, 4226, 2113, 2113, 4258, 6339, 6371, 2145, 0, 4258, 32, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4226, 2113, 0, 2113, 0, 32, 0, 0, 0, 0, 0, 0, 0, 12678, 16904, 2145, 2145, 6339, 0, 0, 0, 0, 0, 0, 0, 0, 8452, 27501, 21162, 14791, 29582, 33808, 8452, 0, 4258, 4226, 0, 0, 0, 0, 12710, 27469, 29582, 14823, 0, 12678, 21130, 27469, 27469, 10565, 0, 0, 0, 2113, 8452, 16936, 27501, 12710, 0, 6371, 27469, 25388, 12710, 2145, 0, 0, 0, 0, 8484, 23243, 52857, 14791, 0, 19049, 25356, 12678, 2145, 0, 0, 0, 0, 0, 12710, 23275, 50712, 0, 0, 35921, 31727, 14791, 8452, 0, 0, 0, 0, 0, 23275, 25356, 25356, 0, 0, 38034, 31695, 12710, 4226, 32, 0, 0, 0, 8452, 31695, 21162, 21130, 0, 2145, 27469, 16904, 10597, 8452, 0, 0, 0, 0, 0, 8484, 6371, 21130, 19049, 21162, 6371, 12678, 12710, 4258, 0, 0, 0, 0, 0, 0, 0, 16904, 31727, 6371, 0, 2113, 4226, 32, 0, 0, 0, 0, 0, 2113, 10597, 19017, 19049, 14823, 2145, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {2113, 4226, 32, 2145, 0, 2113, 4226, 0, 32, 2145, 2113, 2145, 4258, 4226, 2145, 2113, 0, 32, 0, 0, 0, 0, 2113, 10565, 8484, 4226, 2145, 32, 32, 2145, 0, 0, 0, 0, 0, 0, 0, 4226, 14791, 12678, 6339, 32, 2113, 4226, 0, 0, 0, 0, 4226, 10565, 14791, 8452, 10597, 19017, 6371, 2113, 2113, 4226, 2113, 0, 6339, 2145, 8484, 8452, 16936, 10597, 12678, 19049, 10597, 32, 4258, 4226, 6339, 16936, 29582, 40147, 40179, 35921, 16904, 14823, 12678, 12710, 8484, 32, 2145, 4226, 16904, 44373, 44373, 42260, 40147, 38066, 35953, 12710, 10565, 16936, 2113, 2145, 32, 2113, 10597, 14823, 12678, 12710, 2145, 14823, 25388, 21162, 14823, 12678, 0, 32, 0, 32, 0, 0, 6339, 6339, 0, 12678, 8484, 10565, 0, 0, 0, 0, 2113, 0, 0, 0, 0, 32, 0, 0, 4226, 4258, 0, 0, 0, 2113, 2113, 0, 0, 0, 0, 2113, 12678, 16904, 6339, 0, 0, 0, 0, 32, 2145, 2145, 2145, 2113, 0, 8484, 19049, 19049, 2145, 0, 0, 0, 0, 32, 2145, 32, 6339, 12710, 21130, 25356, 21130, 16904, 12710, 12710, 4226, 4258, 32, 4226, 4226, 2113, 32, 2145, 0, 32, 2113, 6339, 4258, 6339, 4226, 32, 4258, 2145}, {4226, 32, 6339, 2145, 4258, 4226, 4226, 2145, 4258, 2113, 4226, 2145, 2145, 4226, 2145, 2113, 2145, 2145, 4258, 0, 0, 0, 0, 32, 4226, 6339, 2113, 2145, 4226, 0, 0, 0, 0, 0, 0, 4226, 6339, 6371, 12678, 10565, 2145, 4258, 2113, 2113, 0, 0, 0, 0, 0, 2145, 8452, 0, 4226, 16936, 8484, 4226, 4258, 0, 0, 2113, 10565, 19017, 19017, 32, 6339, 0, 0, 12710, 10565, 4226, 4226, 4226, 4226, 21130, 38066, 42292, 16936, 32, 2145, 0, 32, 12710, 4258, 4258, 6339, 2145, 8484, 27501, 27469, 23275, 8452, 8484, 10597, 12710, 19049, 14823, 2145, 32, 32, 2113, 6371, 25356, 29582, 23275, 4258, 16904, 23243, 6339, 2113, 6371, 2145, 4258, 4258, 0, 0, 19049, 33808, 38034, 25388, 29582, 12678, 0, 0, 0, 8452, 2145, 2145, 0, 0, 10597, 25388, 40179, 40179, 19017, 0, 0, 0, 0, 4258, 2145, 2145, 0, 0, 0, 8484, 23243, 21130, 14791, 32, 0, 0, 12678, 6339, 4226, 4258, 0, 0, 0, 2113, 6339, 16936, 12678, 4258, 2113, 8452, 4258, 4258, 4258, 2145, 32, 0, 0, 0, 0, 0, 0, 8452, 6371, 6371, 2145, 32, 2145, 4226, 4226, 32, 32, 4258, 4226, 6371, 4226, 4226, 2145, 2113, 2113, 0, 2145}, {0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 2113, 32, 0, 0, 32, 2113, 8484, 14791, 12678, 8452, 4258, 0, 32, 0, 0, 0, 0, 0, 32, 8452, 19017, 23275, 19049, 8484, 4226, 0, 0, 0, 0, 0, 0, 0, 2145, 10597, 16904, 27469, 44373, 29582, 12678, 2145, 0, 0, 0, 32, 32, 2145, 8452, 10565, 21162, 23275, 50744, 29614, 14791, 8484, 6371, 8452, 2113, 0, 2145, 8452, 14823, 2113, 0, 8452, 44373, 2113, 14823, 16936, 16936, 4258, 0, 32, 4226, 4226, 0, 0, 0, 8452, 25388, 0, 4226, 6339, 8452, 2113, 0, 0, 0, 0, 0, 0, 0, 10597, 8484, 0, 0, 0, 2113, 2113, 32, 0, 32, 2113, 0, 0, 12710, 2145, 0, 0, 0, 6371, 12678, 4258, 32, 0, 0, 12710, 23243, 25356, 40147, 10597, 0, 6339, 23275, 21130, 16936, 2145, 0, 0, 0, 14823, 29582, 40147, 35953, 31695, 21130, 16904, 12678, 10597, 4258, 32, 0, 0, 32, 32, 16904, 16904, 14791, 21130, 14791, 2145, 0, 0, 32, 0, 0, 0, 0, 32, 32, 6371, 12710, 19017, 12710, 16904, 6339, 32, 32, 32, 2113, 0, 2113, 0, 0, 2113, 4258, 8484, 10597, 6371, 6339, 2113, 32, 0, 0}, {4226, 4226, 2113, 32, 2113, 32, 0, 4226, 0, 4258, 32, 2113, 32, 0, 32, 32, 2113, 32, 4226, 4258, 4258, 10597, 6339, 4226, 4226, 0, 32, 4226, 2113, 4226, 6339, 10597, 14791, 16904, 19049, 21130, 8484, 6371, 2145, 0, 0, 2113, 32, 2145, 10597, 12710, 8484, 2113, 8484, 19017, 16936, 2145, 0, 0, 0, 0, 4258, 4226, 12678, 6371, 2113, 0, 8452, 27501, 27501, 12678, 0, 0, 0, 0, 32, 4258, 32, 2113, 0, 0, 0, 19017, 33840, 33808, 27469, 6371, 0, 0, 0, 32, 4226, 0, 6339, 0, 0, 29582, 40179, 27501, 31727, 35953, 10565, 32, 2145, 2113, 8484, 14823, 8484, 2113, 10597, 33808, 38034, 19017, 10597, 16936, 10565, 0, 32, 2145, 6339, 16904, 31727, 31727, 33808, 31695, 21130, 8484, 6339, 8484, 4258, 4226, 32, 2113, 0, 0, 10565, 27469, 16936, 10597, 8452, 6339, 6339, 32, 4258, 4226, 0, 4226, 2145, 0, 0, 4226, 10597, 16936, 8452, 6371, 4258, 32, 2113, 2145, 4258, 2113, 6339, 4226, 0, 32, 6371, 4258, 2145, 2145, 0, 0, 0, 4226, 2113, 2145, 0, 4258, 2145, 0, 0, 6339, 6339, 6371, 2145, 2113, 32, 2113, 32, 2113, 4226, 4226, 6339, 2113, 4258, 4226, 2145, 2113, 0, 32, 4258, 4226}, {0, 0, 0, 0, 0, 0, 32, 0, 0, 32, 0, 32, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2145, 0, 0, 4258, 4226, 12710, 12710, 10597, 0, 0, 0, 0, 32, 32, 0, 32, 4226, 6339, 14823, 19017, 21162, 29614, 23243, 14791, 16904, 16904, 6339, 0, 0, 2113, 4258, 12678, 12678, 19017, 23243, 27469, 46518, 46486, 33808, 29614, 14823, 32, 2113, 2113, 4226, 4226, 4258, 12678, 8452, 38034, 42260, 31695, 19049, 8452, 8452, 2145, 32, 2113, 6339, 2145, 8484, 8484, 6339, 35921, 19017, 21130, 32, 0, 0, 2113, 0, 32, 4226, 2113, 2145, 0, 12678, 6371, 23243, 21130, 0, 0, 0, 0, 2113, 0, 12710, 4258, 0, 0, 4226, 16936, 21130, 2113, 2113, 32, 8452, 6339, 0, 2145, 16936, 16936, 0, 0, 0, 0, 0, 0, 2145, 12678, 10597, 0, 0, 32, 14823, 25356, 4226, 0, 0, 0, 0, 0, 14791, 12678, 4258, 0, 0, 32, 2145, 14791, 25388, 25356, 16936, 16936, 19049, 19049, 12678, 4258, 32, 0, 2113, 0, 0, 6339, 10597, 16936, 21130, 19049, 12710, 4258, 2145, 2113, 0, 0, 0, 0, 0, 2113, 0, 0, 2113, 0, 0, 0, 2113, 0, 0, 32}, {0, 0, 0, 0, 0, 2113, 2113, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6339, 4226, 2113, 32, 2113, 0, 0, 0, 0, 32, 0, 32, 10565, 21162, 31727, 35953, 29614, 19017, 12678, 4258, 0, 0, 0, 0, 0, 0, 0, 0, 8484, 27469, 14823, 8452, 12678, 14823, 8484, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8484, 6339, 0, 0, 0, 0, 32, 6339, 8484, 4226, 0, 0, 0, 0, 10597, 2145, 2113, 0, 0, 0, 10565, 14791, 38034, 59196, 31695, 0, 2145, 32, 6371, 2145, 0, 2145, 0, 2113, 14823, 29582, 46518, 54970, 27501, 8484, 0, 0, 32, 2113, 0, 0, 0, 8452, 19049, 27469, 35953, 25388, 12710, 4258, 0, 0, 6339, 32, 0, 0, 0, 8484, 29582, 38034, 31727, 14791, 12678, 21162, 23243, 25356, 16904, 4226, 0, 0, 0, 8484, 27469, 31695, 25388, 14823, 19049, 23275, 31727, 25388, 10565, 2113, 0, 32, 2113, 32, 2113, 6371, 10597, 21162, 8452, 10597, 19049, 14823, 6339, 32, 2113, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 2145, 2113, 0, 0, 0, 0, 2113, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0}, {4226, 6339, 4226, 4226, 2145, 4226, 4258, 2145, 4258, 2113, 2113, 4258, 4226, 4258, 6339, 2145, 2113, 2145, 32, 4226, 4258, 8484, 10565, 8484, 4226, 4258, 4258, 2145, 0, 2145, 6339, 4258, 10565, 12678, 2113, 0, 0, 4258, 4258, 10565, 4258, 4226, 2145, 4258, 8484, 10565, 8452, 4226, 6339, 8452, 6371, 4226, 4226, 4258, 4226, 4226, 2145, 2145, 2145, 0, 0, 2113, 8452, 29582, 25356, 6371, 2113, 32, 2113, 2145, 2113, 2145, 0, 0, 0, 2113, 0, 21162, 25356, 8484, 0, 0, 0, 4226, 2113, 2145, 2145, 2145, 8452, 16936, 0, 6339, 19017, 12678, 0, 0, 32, 2145, 2113, 2145, 6371, 23275, 35953, 14791, 0, 0, 23275, 23243, 23243, 14791, 4258, 2145, 4258, 4226, 10565, 21130, 6339, 4226, 0, 12678, 19049, 23243, 16904, 14791, 6371, 4258, 4226, 6371, 12678, 12678, 0, 4226, 12678, 19017, 12678, 12710, 12678, 6371, 6371, 4226, 4258, 6339, 12678, 4226, 10597, 21130, 23275, 19049, 19017, 8484, 8484, 6371, 6339, 2113, 2113, 4226, 12710, 10565, 8452, 32, 0, 0, 0, 0, 2145, 2113, 4258, 2145, 4226, 4258, 6339, 10565, 14791, 8452, 32, 0, 0, 0, 4226, 4226, 4226, 4226, 2145, 2113, 6339, 6339, 4258, 8452, 4226, 2145, 4258, 2145, 4258, 2145, 2145, 6339}, {2145, 32, 0, 32, 0, 32, 2113, 0, 0, 2113, 2113, 0, 2113, 0, 32, 32, 2113, 32, 0, 2145, 2145, 4258, 6339, 2145, 0, 32, 32, 0, 0, 0, 2113, 2145, 8484, 16904, 19049, 29582, 33808, 23243, 14823, 8452, 32, 32, 0, 32, 4258, 14791, 19017, 10597, 0, 0, 0, 2113, 14823, 23243, 8484, 32, 0, 32, 12710, 12678, 8484, 8452, 32, 0, 10565, 10597, 10597, 21162, 14791, 0, 32, 4226, 0, 0, 0, 0, 19017, 27469, 12678, 0, 0, 4226, 8452, 2145, 32, 2113, 0, 0, 32, 16936, 21162, 4258, 0, 0, 0, 2145, 4226, 2113, 0, 2113, 0, 4226, 14823, 14823, 21130, 14823, 0, 2113, 10565, 14791, 8452, 2145, 0, 0, 4258, 12678, 8484, 6371, 25388, 16904, 4258, 14823, 21162, 16904, 4258, 32, 32, 2113, 14791, 23275, 25356, 27501, 25356, 8484, 16904, 14823, 14823, 16904, 4258, 32, 0, 32, 8452, 21162, 33840, 35953, 31695, 23275, 21162, 19017, 10565, 6371, 4226, 0, 0, 0, 4258, 12710, 14791, 16904, 25388, 25388, 16936, 8484, 0, 0, 0, 0, 0, 2113, 0, 32, 0, 0, 2145, 4226, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2113, 0, 2113}};
float output[CLS];
const int out_pins[7] = {21, 22, 16, 17, 2, 5, 26 };
const boolean num_array[10][7] = {
{0, 0, 0, 0, 0, 0, 1}, //0
{1, 0, 0, 1, 1, 1, 1}, //1
{0, 0, 1, 0, 0, 1, 0}, //2
{0, 0, 0, 0, 1, 1, 0}, //3
{1, 0, 0, 1, 1, 0, 0}, //4
{0, 1, 0, 0, 1, 0, 0}, //5
{0, 1, 0, 0, 0, 0, 0}, //6
{0, 0, 0, 1, 1, 0, 1}, //7
{0, 0, 0, 0, 0, 0, 0}, //8
{0, 0, 0, 0, 1, 0, 0} //9
};
void dispMask(int mask_idx) {
int p = 0;
for (int i = oy; i < oy + len; i += cell) {
for (int j = ox; j < ox + len; j += cell) {
uint16_t color = wmask[mask_idx][p];
M5.Lcd.fillRect(j, i, cell, cell, color);
p++;
}
}
}
void setup() {
for (int i = 0; i < 7; i++) {
pinMode(out_pins[i], OUTPUT);
}
dacWrite(25, 0);
M5.begin();
M5.Lcd.setBrightness(255);
//disp grid
M5.Lcd.drawRect(ox - 1, oy - 1, len + 2, len + 2, WHITE);
// Serial.begin(115200);
}
void loop() {
// capture
for (int i = 0; i < CLS; i++) {
dispMask(i);
delay(disp_wait);
output[i] = 0.0;
for (int j = 0; j < rep; j++) {
output[i] += float(analogRead(adc_pin));
delayMicroseconds(capture_wait_us);
}
output[i] /= rep;
}
//argmax
float omax = -5000.0;
int argmax = -1;
for (int i = 0; i < CLS; i++) {
if (omax < output[i]) {
omax = output[i];
argmax = i;
}
}
// Serial.println(argmax);
// 7seg output
for (int i = 0; i < 7; i++) {
digitalWrite(out_pins[i], num_array[argmax][i]);
}
}
結果
1ピクセルで手書き文字認識うまくいったhttps://t.co/3RhXywW79P
— Satoshi Tanaka (@stnk20) 2018年7月16日
課題
- 暗いところでしか使えないので、光学系を工夫するなどして明るいところでも使えるようにする。
- キャリブレーションやネットワーク構造を工夫して多層ネットワークを利用し、精度向上する。