8
14

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

特徴量からの周期性の抽出方法

Last updated at Posted at 2019-05-18

SIGNATEのお弁当コンペやった時のコードの抜粋

日付を1~365に変換した後にsin,cosに分解
テストデータをpandasで生成後、matplotlibでグラフ上に変換した結果を描画しています。

import pandas as pd
import numpy as np
import math


def convert_cos(x):
    #return np.cos(math.radians(x / 365))
    return np.cos(math.radians(90 - (x / 365)*360))

def convert_sin(x):
    #return np.cos(math.radians(x / 365))
    return np.sin(math.radians(90 - (x / 365)*360))

def datetime_extract(df,df_col='datetime'):

    df['cos_day']=df[df_col].dt.dayofyear
    df['cos_day'] =df['cos_day'].apply(convert_cos)
    df['sin_day']=df[df_col].dt.dayofyear
    df['sin_day'] =df['sin_day'].apply(convert_sin)
    
    return df
days =pd.date_range(start='2019/1/1', end='2019/12/31', freq='D')
df = pd.DataFrame(days,columns=["date"])
df.head()
date
0 2019-01-01
1 2019-01-02
2 2019-01-03
3 2019-01-04
4 2019-01-05
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 365 entries, 0 to 364
Data columns (total 1 columns):
date    365 non-null datetime64[ns]
dtypes: datetime64[ns](1)
memory usage: 2.9 KB
df = datetime_extract(df,df_col="date")
df.head()
date cos_day sin_day
0 2019-01-01 0.017213 0.999852
1 2019-01-02 0.034422 0.999407
2 2019-01-03 0.051620 0.998667
3 2019-01-04 0.068802 0.997630
4 2019-01-05 0.085965 0.996298
import matplotlib.pyplot as plt
plt.axes().set_aspect('equal', 'datalim')
plt.plot(df.cos_day,df.sin_day)
plt.show()

output_5_0.png

kaggler-ja にwakameさんの実装例ありました。

KaggleのKernelだとここ

8
14
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
8
14

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?