0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【MySQL】WorldDatabaseで操作系SQLをメモ

Last updated at Posted at 2019-12-15

#はじめに
この記事で作成したWorldDatabase on Docker(for Mac)のデータ閲覧がてら操作系のSQLをメモ化しました。
SQLの出展は「スッキリわかる SQL 入門 ドリル215問付き! (スッキリシリーズ)」
このシリーズすごい好きですwわかりやすさは全てに勝る!

#やってみる
##データベース, テーブル, カラムの確認

> SHOW databases;
+--------------------+
| Database           |
+--------------------+
| information_schema |
| mysql              |
| performance_schema |
| sys                |
| world              |
+--------------------+

> use world
Database changed

mysql> SHOW tables;
+-----------------+
| Tables_in_world |
+-----------------+
| city            |
| country         |
| countrylanguage |
+-----------------+

> SHOW columns FROM city;
+-------------+----------+------+-----+---------+----------------+
| Field       | Type     | Null | Key | Default | Extra          |
+-------------+----------+------+-----+---------+----------------+
| ID          | int(11)  | NO   | PRI | NULL    | auto_increment |
| Name        | char(35) | NO   |     |         |                |
| CountryCode | char(3)  | NO   | MUL |         |                |
| District    | char(20) | NO   |     |         |                |
| Population  | int(11)  | NO   |     | 0       |                |
+-------------+----------+------+-----+---------+----------------+

##INSERT, SELECT(WHERE), UPDATE, DELETE


> INSERT INTO city VALUES (99999, 'Okome', 'USA', 'Okome Chan', 99999);

> SELECT * FROM city WHERE ID = 99999;
+-------+-------+-------------+------------+------------+
| ID    | Name  | CountryCode | District   | Population |
+-------+-------+-------------+------------+------------+
| 99999 | Okome | USA         | Okome Chan |      99999 |
+-------+-------+-------------+------------+------------+

> UPDATE city SET Name = 'Okome-chan' WHERE ID = 99999;
Rows matched: 1  Changed: 1  Warnings: 0

> SELECT * FROM city WHERE Name = 'Okome-chan';
+-------+------------+-------------+------------+------------+
| ID    | Name       | CountryCode | District   | Population |
+-------+------------+-------------+------------+------------+
| 99999 | Okome-chan | USA         | Okome Chan |      99999 |
+-------+------------+-------------+------------+------------+

> DELETE FROM city WHERE ID = 99999;

> SELECT * FROM city WHERE ID = 99999;
Empty set (0.00 sec)

##コメントの書き方×2

-- コメント(行末まで有効)
/* コメント */

##ASで別名の定義

> SELECT ID, Name FROM city WHERE ID = 99999;
+-------+-------+
| ID    | Name  |
+-------+-------+
| 99999 | Okome |
+-------+-------+

> SELECT ID AS id, Name AS name FROM city WHERE ID = 99999;
+-------+-------+
| id    | name  |
+-------+-------+
| 99999 | Okome |
+-------+-------+

##DISTINCT, ORDER BY, LIMIT

> SELECT DISTINCT ID from city;
4081 rows in set (0.01 sec)

# 昇順
> SELECT DISTINCT ID FROM city ORDER BY ID ASC;

# 降順
> SELECT DISTINCT ID FROM city ORDER BY ID DESC;

# 上位3行の出力
> SELECT DISTINCT ID FROM city ORDER BY ID desc LIMIT 3;

# 列番号でカラムの代替が可能
> SELECT DISTINCT ID FROM city ORDER BY 1 ASC;

# 例:主キーを列番号でasc
> SELECT * FROM city ORDER BY 1 DESC;

##集合演算子(UNION, EXCEPT, INTERSECT)
適した列がないですねw

# UNION(和)
> SELECT Name FROM city UNION SELECT Name FROM country;

# EXCEPT(差)
> SELECT Name FROM city EXCEPT SELECT Name FROM country;

# INTERSECT(積)
> SELECT Name FROM city INTERSECT SELECT Name FROM country;

##計算式

# SELECT文の選択列リストで計算する
> SELECT Name, Population FROM country WHERE Population > 22720000 LIMIT 3;
+------------+------------+
| Name       | Population |
+------------+------------+
| Argentina  |   37032000 |
| Bangladesh |  129155000 |
| Brazil     |  170115000 |
+------------+------------+

> SELECT Name, Population, Population + 50000000 AS Population2 FROM country WHERE Population > 22720000 LIMIT 3;
+------------+------------+-------------+
| Name       | Population | Population2 |
+------------+------------+-------------+
| Argentina  |   37032000 |    87032000 |
| Bangladesh |  129155000 |   179155000 |
| Brazil     |  170115000 |   220115000 |
+------------+------------+-------------+

# CASE演算子。BashとかのCASEと使い方は同じですね。長いので改行してます。
# when〜thenには演算子で計算式を使うこともできる。
mysql> SELECT Name, Population,
    -> CASE Name
    -> WHEN 'Argentina' THEN 'Argentina2'
    -> WHEN 'Bangladesh' THEN 'Bangladesh2'
    -> WHEN 'Brazil' THEN 'Brazil2';
    -> END AS Population3
    -> FROM country WHERE Population > 22720000 LIMIT 3
    -> ;
+------------+------------+-------------+
| Name       | Population | Population3 |
+------------+------------+-------------+
| Argentina  |   37032000 | Argentina2  |
| Bangladesh |  129155000 | Bangladesh2 |
| Brazil     |  170115000 | Brazil2     |
+------------+------------+-------------+

##関数
よく使いそうな気がする関数だけ試しました。
あとは都度調べる。めんどうやしね。

# LENGH関数
> SELECT Name, LENGTH(Name) AS Name2 FROM country WHERE Population > 22720000 LIMIT 3;
+------------+-------+
| Name       | Name2 |
+------------+-------+
| Argentina  |     9 |
| Bangladesh |    10 |
| Brazil     |     6 |
+------------+-------+

# ROUND関数(指定行で四捨五入する)
> SELECT Name, ROUND(Population, -7) AS Population4 FROM country WHERE Population > 22720000 LIMIT 3;
+------------+-------------+
| Name       | Population4 |
+------------+-------------+
| Argentina  |    40000000 |
| Bangladesh |   130000000 |
| Brazil     |   170000000 |
+------------+-------------+

> SELECT Name, ROUND(Population, -8) AS Population4 FROM country WHERE Population > 22720000 LIMIT 3;
+------------+-------------+
| Name       | Population4 |
+------------+-------------+
| Argentina  |           0 |
| Bangladesh |   100000000 |
| Brazil     |   200000000 |
+------------+-------------+

# CURRENT_DATE, CURRENT_TIME
> SELECT Name, Population, CURRENT_DATE AS Population5 FROM country WHERE Population > 22720000 LIMIT 3;
+------------+------------+-------------+
| Name       | Population | Population5 |
+------------+------------+-------------+
| Argentina  |   37032000 | 2019-12-14  |
| Bangladesh |  129155000 | 2019-12-14  |
| Brazil     |  170115000 | 2019-12-14  |
+------------+------------+-------------+

mysql> SELECT Name, Population, CURRENT_TIME AS Population5 FROM country WHERE Population > 22720000 LIMIT 3;
+------------+------------+-------------+
| Name       | Population | Population5 |
+------------+------------+-------------+
| Argentina  |   37032000 | 07:05:49    |
| Bangladesh |  129155000 | 07:05:49    |
| Brazil     |  170115000 | 07:05:49    |
+------------+------------+-------------+

##集計関数

# SUM, AVG, MAX, MIN, COUNT
> SELECT SUM(Population) AS Population5 FROM country;
+-------------+
| Population6 |
+-------------+
|  6078749450 |
+-------------+

> SELECT AVG(Population) AS Population5 FROM country;
+---------------+
| Population6   |
+---------------+
| 25434098.1172 |
+---------------+

> SELECT MAX(Population) AS Population5 FROM country;
+-------------+
| Population6 |
+-------------+
|  1277558000 |
+-------------+

> SELECT MIN(Population) AS Population5 FROM country;
+-------------+
| Population6 |
+-------------+
|           0 |
+-------------+

> SELECT COUNT(*) AS Population5 FROM country;
+-------------+
| Population6 |
+-------------+
|         239 |
+-------------+

> SELECT COUNT(Name) AS Population5 FROM country;
+-------------+
| Population6 |
+-------------+
|         239 |
+-------------+

##グループ化

> SELECT Continent, SUM(Population) AS total FROM country GROUP BY Continent;
+---------------+------------+
| Continent     | total      |
+---------------+------------+
| Asia          | 3705025700 |
| Europe        |  730074600 |
| North America |  482993000 |
| Africa        |  784475000 |
| Oceania       |   30401150 |
| Antarctica    |          0 |
| South America |  345780000 |
+---------------+------------+

# 集計結果で絞り込むにはHAVINGを使う
> SELECT Continent, SUM(Population) AS total FROM country GROUP BY Continent HAVING SUM(Population) > 0;
+---------------+------------+
| Continent     | total      |
+---------------+------------+
| Asia          | 3705025700 |
| Europe        |  730074600 |
| North America |  482993000 |
| Africa        |  784475000 |
| Oceania       |   30401150 |
| South America |  345780000 |
+---------------+------------+

#おわりに
金額とかの集計しやすい列はないので、そこは別でクリアすれば文句なしですね。
好き放題&使い捨てできるDBがサッと起動する、っていう可搬性のほうが優ってます。

SQLは小文字派だったのですが、字面にすると大文字のほうが断然読みやすいですねw
以上です:bow_tone1:

0
0
2

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?