0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

アナログ振幅変調(AM)

Last updated at Posted at 2024-02-10

振幅変調とは

変調方式の一つ

送信信号は,$u(t) = ARe[\chi (s(t))e^{j2\pi f_ct}]$と表される.

送りたい信号(ベースバンド信号)$s(t)$が振幅に入っている.$\chi(s(t))$によって振幅変調の種類が変わる.
その信号を搬送波($e^{j2\pi f_ct}$)によって送信信号の周波数を$f_c$付近にしている.

信号の流れ

信号が変調・送信・受信・復調される図は下のイメージ

使用する文字

$u(t)$:送信信号
$v(t)$:受信信号
$\gamma_i$:復調器に入力する信号(受信信号)の SNR
$\gamma_o$:復調器から出力された信号(受信者が受け取る信号)の SNR

SNR は信号対雑音電力比であり,以下のように表される.

\begin{align}
\frac{E\left[ \left| 信号成分 \right|^2\right]}{E\left[\left|雑音成分\right|^2\right]}
\end{align}

包絡線検波を前提とした変調

送信信号

$\chi (s(t)) = 1 + m_a s(t)$

\begin{align}
u(t) &= ARe\left[ \{1 + m_a s(t)\} cos(2\pi f_c t)\right] \\
    &= A(1 + m_a s(t))cos(2\pi f_c t)\\
\end{align}

受信信号

\begin{align}
v(t) = A(1 + m_a s(t))cos(2\pi f_c t) + n(t)
\end{align}

復調器入力 SNR

\begin{align}
\gamma_i &= \frac{E\left[ \left| A(1 + m_a s(t))cos(2\pi f_c t) \right|^2\right]}{E\left[\left|n(t)\right|^2\right]}\\
    &= \frac{\frac{A^2}{2}+m_a^2E\left[|s(t)|^2\right]}{N_0B}\\
    &= \frac{\frac{A^2}{2}+m_a^2E\left[|s(t)|^2\right]}{2f_mN_0}
\end{align}

復調後信号(同期検波)

\begin{align}
y(t) &= [v(t)cos(2\pi f_ct)]_{LPF}\\
    &= [\{A(1+m_a s(t))cos(2\pi f_c t) + n_I(t)cos(2\pi f_ct) - n_Qsin(2\pi f_ct)\}cos(2\pi f_ct)]_{LPF}\\
    &= [A(1+m_a s(t))cos^2(2\pi f_c t) + n_I(t)cos^2(2\pi f_ct) - n_Qsin(2\pi f_ct)cos(2\pi f_ct)]_{LPF}\\
    &= \frac{A}{2}(1+m_as(t)) +\frac{n_I}{2}
\end{align}

半角の公式より

\begin{align}
[cos^2f_c]_{LPF} = \left[\frac{1}{2}+\frac{cos(2f_c)}{2}\right]_{LPF} = \frac{1}{2}\\
[sin(f_c)cos(f_c)]_{LPF} = \left[\frac{1}{2}sin(2f_c)\right] = 0
\end{align}

復調器出力 SNR

\begin{align}
\gamma_o &= \frac{E\left[ \left| \frac{A}{2}(1+m_as(t)) \right|^2\right]}{E\left[\left|\frac{1}{2}n(t)\right|^2\right]}\\
    &= \frac{\frac{A}{4}m_a^2E\left[|s(t)|^2\right]}{\frac{1}{4}N_0B}\\
    &= \frac{Am_a^2E\left[|s(t)|^2\right]}{2f_mN_0}
\end{align}

以下の信号でも送信信号さえ決めてしまうと同じことができる.

DSB-SC

$\chi (s(t)) = m_a s(t)$

\begin{align}
u(t) &= ARe\left[ m_a s(t) cos(2\pi f_c t)\right] \\
    &= Am_a s(t)cos(2\pi f_c t)
\end{align}

SSB

$\chi (s(t)) = s(t) + js'(t)$

\begin{align}
u(t) &= ARe\left[ \{s(t) + js'(t)\} cos(2\pi f_c t)\right]\\
    &= A\{s(t)cos(2\pi f_ct) - s'(t)sin(2\pi f_ct)\}
\end{align}

QAM

$\chi (s(t)) = s_I(t) + js_Q(t)$

\begin{align}
u(t) &= ARe\left[ \{s_I(t) + js_Q(t)\} cos(2\pi f_c t)\right]\\
    &= A\{s_I(t)cos(2\pi f_ct) - s_Q(t)sin(2\pi f_ct)\}
\end{align}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?