0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

任意ビット数の素数作成 Python コード RSA

Posted at

from random import randrange, getrandbits
def is_prime(n, k=128):
    """ Test if a number is prime
        Args:
            n -- int -- the number to test
            k -- int -- the number of tests to do
        return True if n is prime
    """
    # Test if n is not even.
    # But care, 2 is prime !
    if n == 2 or n == 3:
        return True
    if n <= 1 or n % 2 == 0:
        return False
    # find r and s
    s = 0
    r = n - 1
    while r & 1 == 0:
        s += 1
        r //= 2
    # do k tests
    for _ in range(k):
        a = randrange(2, n - 1)
        x = pow(a, r, n)
        if x != 1 and x != n - 1:
            j = 1
            while j < s and x != n - 1:
                x = pow(x, 2, n)
                if x == 1:
                    return False
                j += 1
            if x != n - 1:
                return False
    return True
def generate_prime_candidate(length):
    """ Generate an odd integer randomly
        Args:
            length -- int -- the length of the number to generate, in bits
        return a integer
    """
    # generate random bits
    p = getrandbits(length)
    # apply a mask to set MSB and LSB to 1
    p |= (1 << length - 1) | 1
    return p
def generate_prime_number(length=1024):
    """ Generate a prime
        Args:
            length -- int -- length of the prime to generate, in          bits
        return a prime
    """
    p = 4
    # keep generating while the primality test fail
    while not is_prime(p, 128):
        p = generate_prime_candidate(length)
    return p
print(generate_prime_number(2048))

2048ビットの素数例:

20948172001047358695787926888543743007121894047281908178348238095923963654562944507571635573909599330750753908673791853434139259413498165407600798568046507417382554220603146857898880242139067942230420218948994690003175384321032039386546524503466171675149316582304280062366747568422231701323955309340021375493571986613299600962261395718838935046659674806867659406735896778288176596852814927057082033184374768674561673765820787184619224336304267299492915726404455278589609784860501087313584245593398727512979161685117567902676990934207293923153569022277053938151385766936395777706415035184876785227611987928216386762133

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?