0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Swift で Dijkstra Algorithm(ダイクストラ法)使ってSSSP:Single Source Shortest Path(単一始点最短経路問題)

Last updated at Posted at 2021-09-02

Swift で Dijkstra Algorithm を書いたので備忘用にメモ

NOTE

  • 実装方法
    • Dijkstra algo の実装方法としては大きく2通り(Naitve array / Primary Queue)あり、それぞれの実装方法によって Time Complexity が変わってくる
  • 実装:DP

Naive Array Way

  • implementation: naive array
  • start from 1-index
  • Time Complexity: O(V^2) (V: number of vertexes)
struct Edge {
    let to: Int
    let weight:Int
}

// List does not use 0-index but starts from 1-indexrunning.
// n: number of nodes
// k: start node
func dijkstra(_ adjList: [[Edge]], _ n: Int, _ k: Int) -> ([Int], [Bool]){
    var visited = [Bool](repeating: false, count: n+1)
    var dist = [Int](repeating: Int.max, count: n+1)
    visited[0] = true // no need 0-index
    dist[0] = -1      // no need 0-index
    
    // init
    dist[k] = 0
    
    // loop for all nodes
    for _ in 1...n { // O(V)
        // find vertex:
        //   which is not visited yet.
        //   whose dist is smallest
        let minVertex: Int = { // O(V)
            var minDist = Int.max // placeholder
            var minVertex = -1    // placeholder
            for vertex in 1...n { // nodes are at 1 to n
                if visited[vertex] { continue }
                if minDist > dist[vertex] {
                    minDist = dist[vertex]
                    minVertex = vertex
                }
            }
            return minVertex
        }()
        
        // quick return
        if minVertex == -1 { break }
        
        // run the relaxation
        let from = minVertex
        let adj = adjList[from]
        for edge in adj {
            let to = edge.to
            let w = edge.weight
            if dist[to] > dist[from] + w {
                dist[to] = dist[from] + w
            }
        }

        // visit
        visited[minVertex] = true
    }
    return (dist, visited)
}

PQ Way

  • implementation: Primary Queue
  • start from 1-index
  • Comparison to naive array:
    • Improving find minVertex process with Heap. Time Complexity is changed O(V) to O(logV).
    • Deteriorating to update store as PQ from O(1) to O(log V)

Way1

けんちょん本の方法

// Before running, need a ready for IndexPriorityQueue, CompVertex.

func dijkstra(_ adjList: [[Edge]], _ n: Int, _ k: Int) -> ([Int], [Bool]){
    var visited = [Bool](repeating: false, count: n+1)
    var dist = [Int](repeating: Int.max, count: n+1)
    visited[0] = true // no need 0-index
    dist[0] = -1      // no need 0-index
    
    // init
    dist[k] = 0
    visited[k] = true
    var pq = PQ<CompVertex>(<) // min-heap
    pq.enqueue(CompVertex(v: k, d: dist[k]))
    
    // loop for all nodes
    while let vertex = pq.dequeue() {
        let v = vertex.v; let d = vertex.d; 
        if d > dist[v] { continue } // ignore because thsi is old info.
        for edge in adjList[v] { // next edges
            if dist[edge.to] > edge.weight + dist[v] {
                dist[edge.to] = edge.weight + dist[v]
                pq.enqueue(CompVertex(v: edge.to, d: dist[edge.to]))
            }
        }
        visited[v] = true
    }
    
    return (dist, visited)
}

Way2

func dijkstra(_ adjList: [[Edge]], _ n: Int, _ k: Int) -> ([Int], [Bool]){
    var visited = [Bool](repeating: false, count: n+1)
    var dist = [Int](repeating: Int.max, count: n+1)
    visited[0] = true // no need 0-index
    dist[0] = -1      // no need 0-index
    
    // init
    dist[k] = 0
    visited[k] = true
    var pq = PQ<CompEdge>(<)
    for edge in adjList[k] {
        pq.enqueue(CompEdge(to: edge.to, d: edge.weight))
    }
    
    // loop for all nodes
    while let edge = pq.dequeue() {
        if dist[edge.to] > edge.d {
            dist[edge.to] = edge.d
            for nextEdge in adjList[edge.to] {
                pq.enqueue(CompEdge(to: nextEdge.to, d: dist[edge.to] + nextEdge.weight))
            }
            visited[edge.to] = true
        }
    }
    
    return (dist, visited)
}

MEMO

Relaxation

if dist[to] > dist[from] + weight {
    dist[to] = dist[from] + weight
}

// or

dist[to] = min(dist[to], dist[from] + weight)
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?