LoginSignup
1
0

More than 3 years have passed since last update.

量子計算のための回転行列

Last updated at Posted at 2019-10-03

参考:
- https://en.wikipedia.org/wiki/Rotation_operator_(quantum_mechanics)
- http://www.appi.keio.ac.jp/Itoh_group/spintronics/pdf/QC2005/QI-School-2005-5.pdf

導入

量子回路に必要な演算子である,$R_x$, $R_y$, $R_z$の形を備忘録

記号

$X$, $Y$, $Z$: pauli行列
$I$: 単位行列

準備

$$
X^n =
\begin{cases}
I \;\;(n\rm{:even}) \\
X \;\;(n\rm{:odd}) \\
\end{cases}
$$
$Y$,$Z$も同様.

RX

テイラー展開を行うと,

R_x(\theta) \equiv e^{-i\theta X/2} = \cos\frac{\theta}{2}I -i\sin\frac{\theta}{2}X =
\begin{pmatrix}
\cos(\theta/2) & -i\sin(\theta/2) \\
-i\sin(\theta/2) & \cos(\theta/2) 
\end{pmatrix}

RY

R_y(\theta) \equiv e^{-i\theta Y/2} = \cos\frac{\theta}{2}I -i\sin\frac{\theta}{2}Y =
\begin{pmatrix}
\cos(\theta/2) & -\sin(\theta/2) \\
\sin(\theta/2) & \cos(\theta/2) 
\end{pmatrix}

$\theta=\pi/2$ のとき

\begin{pmatrix}
\cos(\pi/4) & -\sin(\pi/4) \\
\sin(\pi/4) & \cos(\pi/4) 
\end{pmatrix}
= \frac{1}{\sqrt{2}}\begin{pmatrix}
1 & -1 \\
1 & 1
\end{pmatrix}

RZ

R_z(\theta) \equiv e^{-i\theta Z/2} = \cos\frac{\theta}{2}I -i\sin\frac{\theta}{2}Z =
\begin{pmatrix}
e^{-i\theta/2} & 0 \\
0 & e^{i\theta/2}
\end{pmatrix}

生成子

$X/2$, $Y/2$, $Z/2$, などを回転行列の生成子と呼ぶ.ちなみに物理のローレンツブーストでも同じような計算が出てくる.(ただし,$\cos, \sin$が$\cosh, \sinh$になる.)
参考: 量子力学選書 場の量子論 坂本眞人 p.132

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0