0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Pythonで理解する名門の森

Last updated at Posted at 2024-04-10

image.png
解説の方は動画でみるとよいかもしれません。ここではPythonコードでシミュレーションプログラムを作っていきます。コピペして使ってください。

image.png

import numpy as np
import matplotlib.pyplot as plt

# 関数定義
def x(t, initial_velocity, acceleration):
    return initial_velocity * t + 0.5 * acceleration * (t**2)

# 時間の範囲を設定
t_values = np.linspace(0, 10, 100)  # 0から10の範囲を100分割

# 初速度と加速度を指定
initial_velocity = 5
acceleration = 9.8

# x(t)の計算
position = x(t_values, initial_velocity, acceleration)

# x(t)のプロット
plt.figure(figsize=(10, 5))
plt.plot(t_values, position, label='x(t)')
plt.xlabel('Time (t)')
plt.ylabel('Position (x)')
plt.title('Position vs Time')
plt.legend()
plt.grid(True)
plt.show()

# x(t)をtで微分した結果をプロット
velocity = initial_velocity + acceleration * t_values
plt.figure(figsize=(10, 5))
plt.plot(t_values, velocity, label='Velocity')
plt.xlabel('Time (t)')
plt.ylabel('Velocity')
plt.title('Velocity vs Time')
plt.legend()
plt.grid(True)
plt.show()

# x(t)をtで2回微分した結果をプロット
acceleration_values = np.full_like(t_values, acceleration)
plt.figure(figsize=(10, 5))
plt.plot(t_values, acceleration_values, label='Acceleration')
plt.xlabel('Time (t)')
plt.ylabel('Acceleration')
plt.title('Acceleration vs Time')
plt.legend()
plt.grid(True)
plt.show()

image.png

image.png

image.png

微分方程式の解説
ラプラス変換と伝達関数を使って微分方程式の解を求める

image.png
F(s)をラプラス変換で求めて、X(s)を逆ラプラス変換してX(t)を求める
image.png

image.png

image.png

image.png

import numpy as np
import matplotlib.pyplot as plt

# Parameter settings
A = 1  # Value of A
omega = 2  # Value of ω
C = 3  # Value of constant C
K = 1  # Value of K

# Time range
t = np.linspace(0, 10, 1000)

# x(t)
x = A * np.cos(omega * t) + C / K

# x'(t)
x_prime = -A * omega * np.sin(omega * t)

# x''(t)
x_double_prime = -A * omega**2 * np.cos(omega * t)

# Plot
plt.figure(figsize=(10, 6))

plt.plot(t, x, label='x(t)', color='blue')
plt.plot(t, x_prime, label="x'(t)", color='red')
plt.plot(t, x_double_prime, label="x''(t)", color='green')

plt.title('Plot of x(t), x\'(t), x\'\'(t)')
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
plt.grid(True)
plt.show()


image.png

import numpy as np
import matplotlib.pyplot as plt

# 初期条件
A = 50
d = 2
omega = 1  # 適切な値に置き換える必要があります

# データポイントの準備
t = np.array([0, 2*np.pi/omega, 4*np.pi/omega, 6*np.pi/omega])
x = np.array([A, A-4*d, A-8*d, A-12*d])

# y=d および y=-d をプロットするためのデータ
y_d = np.array([d, d, d, d])
y_minus_d = np.array([-d, -d, -d, -d])

# プロット
plt.plot(t, x, marker='o', label='Data Points')
plt.plot(t, x, linestyle='-', color='blue')  # データポイントを結ぶ線
plt.plot(t, y_d, linestyle='--', color='red', label='y=d')
plt.plot(t, y_minus_d, linestyle='--', color='green', label='y=-d')

# ラベルと凡例の追加
plt.xlabel('Time')
plt.ylabel('Position')
plt.title('Position vs Time')
plt.legend()

# グリッドを表示
plt.grid(True)

# プロットを表示
plt.show()

image.png

image.png

import numpy as np
import matplotlib.pyplot as plt

# パラメータの値を設定
F = 1.0  # 力の値
D = 1.0  # 減衰の値
T = 1.0  # 時定数

# 微分方程式の右辺を定義
def diff_eq1(t):
    return (F/D) * (1 - np.exp(-t / T))

def diff_eq2(t):
    return (F/D) * np.exp(-t / T)

# 時間の範囲を設定
t = np.linspace(0, 10, 100)  # 0から10までの時間を100分割

# 微分方程式の解析解を計算
analytical_solution1 = (F/D) * (t - T * (1 - np.exp(-t / T)))
analytical_solution2 = (F/D) * (T * (np.exp(-t / T) - 1))

# 解析解と数値解のプロット
plt.plot(t, diff_eq1(t), label="X'(t) = (F/D)(1 - e^(-t/T))")
plt.plot(t, diff_eq2(t), label="X'(t) = (F/D)(e^(-t/T))")
plt.xlabel('Time')
plt.ylabel('X\'(t)')
plt.title('Analytical Solutions of the Differential Equations')
plt.legend()
plt.grid(True)
plt.show()

image.png

3番

import numpy as np
import matplotlib.pyplot as plt

# 定数
e = 0.5

# θの値を生成
theta = np.linspace(0, 2*np.pi, 100)

# 関数を定義
def y1(theta):
    return np.exp(1) * np.cos(theta)

def y2(theta):
    return np.exp(2) * np.cos(theta)

def y3(theta):
    return np.exp(3) * np.cos(theta)

# プロット
plt.figure(figsize=(8, 6))
plt.plot(theta, y1(theta), label='y1 = e^1 * v(cosθ)')
plt.plot(theta, y2(theta), label='y2 = e^2 * v(cosθ)')
plt.plot(theta, y3(theta), label='y3 = e^3 * v(cosθ)')
plt.xlabel('θ')
plt.ylabel('y')
plt.title('Functions Plot')
plt.legend()
plt.grid(True)
plt.show()

image.png

18番

import matplotlib.pyplot as plt

# パラメータ
m = 1
M = 2
l = 3
θ = 30  # 角度を度数法で指定

# 点の座標計算
x1, y1 = 0, 0
x2, y2 = m * l * (1 - abs(θ)/90) / (m + M), 0
x3, y3 = l, 0

# プロット
plt.plot([x1, x2, x3], [y1, y2, y3], 'ro')  # 赤い点でプロット
plt.text(x1, y1, '(0, 0)', fontsize=12, ha='right')
plt.text(x2, y2, f'({x2}, 0)', fontsize=12, ha='right')
plt.text(x3, y3, f'({x3}, 0)', fontsize=12, ha='right')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Plot of points in two dimensions')
plt.grid(True)
plt.axis('equal')  # アスペクト比を等しくする
plt.show()

image.png

電磁気編

from sympy import symbols, sqrt, solve

# Define the symbols
x, λ, m = symbols('x λ m')

# Define the equation
equation = sqrt((3 * λ)**2 + x**2) - x - (m + 1/2) * λ

# Solve for x
solution = solve(equation, x)
print(solution)
import numpy as np
import matplotlib.pyplot as plt

def F(m):
    return (9 - (m + 0.5)**2) / (2 * m + 1)

m_values = np.linspace(-5, 5, 400)  # Get 400 points from -5 to 5

plt.figure(figsize=(8, 6))  # Set the size of the plot
plt.plot(m_values, F(m_values), label='$F(m)$')  # Plot the values of F(m)
plt.xlabel('$m$')  # x-axis label
plt.ylabel('$F(m)$')  # y-axis label
plt.title('Graph of $F(m)$')  # Title of the graph
plt.grid(True)  # Show grid
plt.legend()  # Show legend
plt.show()  # Display the graph


image.png

import numpy as np
import matplotlib.pyplot as plt

# Function definition
def W(x, epsilon, C, V, I):
    return -(epsilon - 1) * C * V**2 * x / (2 * (I + (epsilon - 1) * x))

# Parameters
epsilon = 1.5  # Relative permittivity
C = 1         # Capacitance (in farads)
V = 10        # Voltage (in volts)
I = 5         # Current (in amperes)

# Generate x values
x_values = np.linspace(0, 10, 100)

# Calculate corresponding W values
W_values = W(x_values, epsilon, C, V, I)

# Plot
plt.plot(x_values, W_values)
plt.xlabel('x')
plt.ylabel('W(x)')
plt.title('Plot of W(x)')
plt.grid(True)
plt.show()


image.png

import numpy as np
import matplotlib.pyplot as plt

# Define the function
def Q(x, a, CV):
    return -((2 * x**2) / (a**2 - x**2)) * CV

# Define the range of x values
x_values = np.linspace(-5, 5, 400)  # Adjust the range as needed

# Choose a value for 'a' and 'CV'
a_value = 3
CV_value = 1

# Calculate corresponding y values
y_values = Q(x_values, a_value, CV_value)

# Plot the function
plt.plot(x_values, y_values)
plt.title('Plot of Q(x)')
plt.xlabel('x')
plt.ylabel('Q(x)')
plt.grid(True)
plt.show()



image.png

import numpy as np
import matplotlib.pyplot as plt

# Define the function
def x(n, V):
    return 2*V - V / (2**(n-1))

# Define the range of n values
n_values = np.arange(1, 10)  # Adjust the range as needed

# Choose a value for 'V'
V_value = 10

# Calculate corresponding x values
x_values = x(n_values, V_value)

# Plot the function
plt.plot(n_values, x_values, marker='o', linestyle='-')
plt.title('Plot of x(n)')
plt.xlabel('n')
plt.ylabel('x(n)')
plt.grid(True)
plt.show()



image.png

3番
https://www.ne.jp/asahi/tokyo/nkgw/www_2/gakusyu/gensi/kousi/kansyou_kaisetu_kaisetu/kansyou_kaisetui_kaisetu_2.html



import numpy as np
import matplotlib.pyplot as plt

# 関数の定義
def f(theta, a, wavelength):
    numerator = np.sin((np.pi * a * np.sin(theta)) / wavelength)
    denominator = (np.pi * a * np.sin(theta)) / wavelength
    return (numerator / denominator) ** 2

# パラメータの設定
a = 1.0  # 例として a を1に設定
wavelength = 0.5  # 例として波長を0.5に設定
theta = np.linspace(-np.pi/2, np.pi/2, 1000)  # -π/2 から π/2 までの角度を1000個生成

# プロット
plt.plot(theta, f(theta, a, wavelength))
plt.xlabel('θ')
plt.ylabel('f(θ)')
plt.title('Plot of f(θ)')
plt.grid(True)
plt.show()


image.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?