57
52

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Semantic Segmentation Using Deep Learning

Last updated at Posted at 2018-04-06

#概要
深層学習を活用したSemantic Segmentationについての論文をピックアップし掲載する。

##FCN(Fully Convolutional Networks)
畳み込みのみで表現されたネットワークで全結合層がないことが特徴。
スキップアーキテクチャーによってローカル特徴を保持する。
(プーリングを行うほど高次な特徴が抽出できるが、ローカルな特徴は失われていくという性質がある)
image.png
https://arxiv.org/abs/1411.4038
##U-Net
プーリング層は位置情報を曖昧にする性質がある。
そのため、浅い層では位置情報が鮮明に、深い層では位置情報が曖昧になっていく。
領域検出では位置情報は曖昧にしてほしくないため、
Encoder-Decoder構造により、物体の局所的情報と全体的位置情報の両方を統合して学習している。
image.png
https://arxiv.org/abs/1505.04597
##SegNet
FCNでは出力層の部分で計算量が多く、メモリや時間を多く必要とする課題がある。
セグメンテーションを高速、省メモリに行えるようにするためにEncoder-Decoder構造を提案。
image.png
https://arxiv.org/abs/1511.00561
##PSPNet(Pyramid Scene Parsing Network)
ILSVRC2016のセマンティックセグメンテーションで1位でCVPR2017で発表された論文。
入力画像からCNN(ResNet+Dlilated Net)で特徴抽出し、その特徴量を異なるサイズのPoolingをかけてUp-samplingし、結果を統合することで識別結果を出力する。オブジェクトの関連性の考慮や似たものの判別、不明瞭なクラスの検出を行わせることが目的。
グローバルな特徴を検出するためのピラミッド構造。
image.png
image.png
https://arxiv.org/abs/1612.01105
https://hszhao.github.io/projects/pspnet/
https://github.com/mitmul/chainer-pspnet
https://github.com/rkuga/PSPNet
##HFCN(Highly Fused Convolutional Network)
up-conv部によって低層で獲得したグローバルな特徴を改めて畳み込むことで得られる特徴を拡張して再利用している。
ソフトコスト関数という領域面積比を考慮した損失関数によって小領域であるときに学習が粗く進むことの対策をしている。
image.png
https://arxiv.org/abs/1801.01317
##VH-HFCN
HFCNの拡張ネットワーク。Downsampling後の特徴マップに対し、VH-stageで垂直方向(9×1)と水平方向(1×9)伸びるカーネルを指定した畳込み層により垂直線形特徴と水平線系特徴を抽出する。
image.png
https://arxiv.org/pdf/1804.07027.pdf

#参考文献リストのサイト
http://ni4muraano.hatenablog.com/entry/2017/08/15/165213
https://github.com/tangzhenyu/SemanticSegmentation_DL

#更新履歴
20180426 : VH-HFCN追加
201803xx : 記事作成

57
52
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
57
52

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?