27
30

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

時系列及び波形データの平滑化3手法(smoothing)

Last updated at Posted at 2020-06-14

これは何か

時系列及び波形データを扱うことがあり、そこで幾つかのsmoothingを試した。備忘録程度に3手法をまとめて記しておく。

波形データの生成

今回使用する波形データを生成しておく

import numpy as np
import matplotlib.pyplot as plt


N = 1024            # サンプル数
dt = 0.001          # サンプリング周期 [s]
f1, f2 = 30, 90    # 周波数 [Hz]
a1, a2 = 1.5, 0.8 # 振幅

t = np.arange(0, N*dt, dt) # 時間 [s]
wave = a1*np.sin(2*np.pi*f1*t) + a2*np.sin(2*np.pi*f2*t) + 0.3 * np.random.randn(N) # 信号


fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, wave)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.title("wave")
plt.show()

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, wave)
ax.set_xlim(0, 0.1)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.title("enlarged view")
plt.show()

wave.png

1. 移動平均

window = 5 # 移動平均の範囲
w = np.ones(window)/window

x = np.convolve(wave, w, mode='same')

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x, label='moving average')
ax.plot(t, wave, alpha=0.3, label='wave')
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.legend()
plt.title("moving average window=5")
plt.show()

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x, label='moving average')
ax.plot(t, wave, alpha=0.3, label='wave')
ax.set_xlim(0, 0.1)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.legend()
plt.title("enlarged view")
plt.show()

mooving_avg.png

2. Savitzky-Golay filter

2.1 微分しないパターン

import scipy.signal

# 多項式の次数: 2
# フレーム長: 5
x = scipy.signal.savgol_filter(wave, 5, 2, deriv=0)

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x, label='Savitzky-Golay')
ax.plot(t, wave, alpha=0.3, label='wave')
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.legend()
plt.title("Savitzky-Golay deriv=0")
plt.show()

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x, label='Savitzky-Golay')
ax.plot(t, wave, alpha=0.3, label='wave')
ax.set_xlim(0, 0.1)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.legend()
plt.title("enlarged view")
plt.show()

sav0.png

2.2 1階微分

x = scipy.signal.savgol_filter(wave, 5, 2, deriv=1)

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.title("Savitzky-Golay deriv=1")
plt.show()

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x)
ax.set_xlim(0, 0.1)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.title("enlarged view")
plt.show()

sav1.png

2.3 2階微分

x = scipy.signal.savgol_filter(wave, 5, 2, deriv=2)

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.title("Savitzky-Golay deriv=2")
plt.show()

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x)
ax.set_xlim(0, 0.1)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.title("enlarged view")
plt.show()

sav2.png

3. フーリエ変換

3.1 Fast Fourier Transform

x = np.fft.fft(wave)
x = np.abs(x) # 複素数を絶対値に変換
x = x / N * 2 # 振幅の調整
fq = np.linspace(0, 1.0/dt, N) # 周波数の調整

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(fq[: int(N / 2)], x[: int(N / 2)])
ax.set_xlabel("Frequency [Hz]")
ax.set_ylabel("Swing")
ax.grid()
plt.title("Fast Fourier Transform")
plt.show()

# 周波数30, 90、振幅1.5, 0.8あたりにピークが見られる

fft.png

3.2 Inverse Fast Fourier Transform without Noise

threshold = 0.6 # 振幅の閾値

x = np.fft.fft(wave)
x_abs = np.abs(x)
x_abs = x_abs / N * 2
x[x_abs < threshold] = 0

x = np.fft.ifft(x)
x = x.real # 複素数から実数部だけ取り出す

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x, label='IFFT')
ax.plot(t, wave, alpha=0.3, label='wave')
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.legend()
plt.title("Inverse Fast Fourier Transform")
plt.show()

fig, ax = plt.subplots(figsize=(14.0, 6.0))
ax.plot(t, x, label='IFFT')
ax.plot(t, wave, alpha=0.3, label='wave')
ax.set_xlim(0, 0.1)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Signal")
ax.grid()
plt.legend()
plt.title("enlarged view")
plt.show()

ifft.png

時間が取れたら、理論の部分を追記したり、他の手法も記載していきたい。

27
30
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
27
30

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?