4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

StanとRでベイズ統計モデリング(アヒル本)をPythonにしてみる - 5.1 重回帰

Last updated at Posted at 2018-08-17

実行環境

インポート

import numpy as np
from scipy import stats
import pandas as pd
import pystan
import matplotlib.pyplot as plt
from matplotlib.figure import figaspect
from matplotlib.markers import MarkerStyle
import seaborn as sns
%matplotlib inline

データ読み込み

attendance1 = pd.read_csv('./data/data-attendance-1.txt')
attendance1['A'] = pd.Categorical(attendance1['A'])

5.1 重回帰

5.1.2 データの分布の確認

11.3で使用するグラフとコードを共通化したため、長くなってしまってます。

def pairplot(df, **kwargs):
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.figure import figaspect
    import seaborn as sns

    def corrplot(x, y, data, cmap=None, correlation='pearson', **kwargs):
        from scipy import stats
        from matplotlib.patches import Ellipse
        
        if correlation is 'spearman':
            r = stats.spearmanr(data[x], data[y])[0]
        else:
            r = stats.pearsonr(data[x], data[y])[0]
        if cmap is None:
            cmap = 'coolwarm'
        if type(cmap) is str:
            cmap = plt.get_cmap(cmap)
        color = cmap((r+1)/2)
        ax.axis('off')
        ax.add_artist(Ellipse((0.5, 0.5), width=np.sqrt(1+r), height=np.sqrt(1-r), angle=45, color=color))
        ax.text(0.5, 0.5, '{:.2f}'.format(r), size='x-large', horizontalalignment='center', verticalalignment='center')
    
    def crosstabplot(x, y, data, ax, **kwargs):
        import pandas as pd

        cross = pd.crosstab(data[x], data[y]).values
        size = cross / cross.max() * 500
        crosstab_kws = kwargs['crosstab_kws'] if 'crosstab_kws' in kwargs else {}
        scatter_kws = dict(color=sns.color_palette()[0], alpha=0.3)
        scatter_kws.update(crosstab_kws['scatter_kws'] if 'scatter_kws' in crosstab_kws else {})
        text_kws = dict(size='x-large')
        text_kws.update(crosstab_kws['text_kws'] if 'text_kws' in crosstab_kws else {})
        for (xx, yy), count in np.ndenumerate(cross):
            ax.scatter(xx, yy, s=size[xx, yy], **scatter_kws)
            ax.text(xx, yy, count, horizontalalignment='center', verticalalignment='center', **text_kws)
    
    def catplot(x, y, hue, data, orient, ax, **kwargs):
        box_kws = dict(color='w')
        box_kws.update(kwargs['box_kws'] if 'box_kws' in kwargs else {})
        sns.boxplot(x, y, data=data, orient=orient, ax=ax, **box_kws)
        strip_kws = dict(color=None if hue else sns.color_palette()[0])
        strip_kws.update(kwargs['strip_kws'] if 'strip_kws' in kwargs else {})
        sns.stripplot(x, y, hue, data, orient=orient, ax=ax, **strip_kws)
        legend = ax.get_legend()
        if legend:
            plt.setp(legend, visible=False)
    
    def scatterplot(x, y, hue, data, ax, **kwargs):
        if hue:
            hues = data[hue].unique()
            colors = sns.color_palette(n_colors=hues.size)
            for h, c in zip(hues, colors):
                ax.scatter(x, y, data=data.query('{col}=={value}'.format(col=hue, value=h)), color=c, **kwargs)
        else:
            ax.scatter(x, y, data=data, **kwargs)
    
    n_variables = df.columns.size
    hue = kwargs['hue'] if 'hue' in kwargs else None
    figsize = kwargs['figsize'] if 'figsize' in kwargs else figaspect(1) * 0.5 * n_variables
    _, axes = plt.subplots(n_variables, n_variables, figsize=figsize)
    plt.subplots_adjust(hspace=0.1, wspace=0.1)
    
    for i in range(n_variables):
        axes[i, i].get_shared_x_axes().join(*axes[i:n_variables, i])
        if i > 1:
            axes[i, 0].get_shared_y_axes().join(*axes[i, :i-1])

    for (row, col), ax in np.ndenumerate(axes):
        x = df.columns[col]
        y = df.columns[row]
        x_data = df[x]
        y_data = df[y]
        x_dtype = x_data.dtype.name
        y_dtype = y_data.dtype.name
        if x_dtype == 'category':
            x_categories = x_data.cat.categories
        if y_dtype == 'category':
            y_categories = y_data.cat.categories
        
        if row == col: # diagonal
            hue_data = df[hue] if hue else None
            if x_dtype == 'category':
                bar_kws = dict(alpha=0.4)
                bar_kws.update(kwargs['bar_kws'] if 'bar_kws' in kwargs else {})
                if hue:
                    cross = pd.crosstab(x_data, hue_data)
                    cross.index = cross.index.categories
                    cross.columns = cross.columns.categories if hue_data.dtype.name == 'category' else hue_data.unique()
                    cross.reset_index(inplace=True)
                    melt = pd.melt(cross, id_vars='index',var_name='hue')
                    sns.barplot('index', 'value', 'hue', data=melt, ci=None, orient='v', dodge=False, ax=ax, **bar_kws)
                    plt.setp(ax.get_legend(), visible=False)
                else:
                    cross = pd.crosstab(x_data, []).values.ravel()
                    sns.barplot(x_data.cat.categories, cross, ci=None, orient='v', color=sns.color_palette()[0], ax=ax, **bar_kws)
            else:
                dist_kws = kwargs['dist_kws'] if 'dist_kws' in kwargs else {}
                if hue:
                    hist_kws = dict(color=sns.color_palette(n_colors=hue_data.unique().size), alpha=0.4)
                    hist_kws.update(dist_kws['hist_kws'] if 'hist_kws' in dist_kws else {})
                    hue_values = df[hue].cat.categories if hue_data.dtype.name == 'category' else df[hue].unique()
                    ax.hist([df.query('{hue}=={v}'.format(hue=hue, v=v))[x] for v in hue_values], density=True, histtype='barstacked', **hist_kws)
                    sns.distplot(x_data, hist=False, ax=ax, **dist_kws)
                else:
                    sns.distplot(x_data, ax=ax, **dist_kws)
        elif row < col: # upper
            corr_kws = kwargs['corr_kws'] if 'corr_kws' in kwargs else {}
            corrplot(x, y, data=df, **corr_kws)
        else: # lower
            if x_dtype == 'category' and y_dtype == 'category':
                crosstabplot(x, y, data=df, ax=ax)
            else:
                cat_kws = kwargs['cat_kws'] if 'cat_kws' in kwargs else {}
                if x_dtype == 'category':
                    catplot(x, y, hue, df, 'v', ax, **cat_kws)
                elif y_dtype == 'category':
                    catplot(x, y, hue, df, 'h', ax, **cat_kws)
                else:
                    scatter_kws = kwargs['scatter_kws'] if 'scatter_kws' in kwargs else {}
                    scatterplot(x, y, hue, df, ax, **scatter_kws)
        if row < n_variables-1:
            plt.setp(ax, xlabel='')
            plt.setp(ax.get_xticklabels(), visible=False)
        else:
            plt.setp(ax, xlabel=x)
            if x_dtype == 'category':
                plt.setp(ax, xticks=np.arange(x_categories.size), xticklabels=x_data.cat.categories)
        if col > 0:
            plt.setp(ax, ylabel='')
            plt.setp(ax.get_yticklabels(), visible=False)
        else:
            plt.setp(ax, ylabel=y)
            if row > 0 and y_dtype == 'category':
                plt.setp(ax, yticks=np.arange(y_categories.size), yticklabels=y_data.cat.categories)
    
    return axes
pairplot(attendance1, hue='A', corr_kws=dict(correlation='spearman'))
plt.show()

fig5-1.png

5.1.6 データのスケーリング

data = dict(
    N=attendance1.index.size,
    A=attendance1['A'],
    Score=attendance1['Score']/200,
    Y=attendance1['Y']
)
fit = pystan.stan('./stan/model5-3.stan', data=data, seed=1234)

5.1.7 推定結果の解釈

fit

出力は省略

fit.traceplot()
fig = plt.gcf()
plt.setp(fig, size_inches=figaspect(len(fit.model_pars)/2))
plt.tight_layout()
plt.show()

model5-3.png

5.1.8 図によるモデルのチェック

ms = fit.extract()

prob = [10, 50, 90]
np.random.seed(1234)

Score_new = np.linspace(50, 200, 30)
y_pred = ms['b1'].reshape((-1, 1, 1)) + ms['b2'].reshape((-1, 1, 1))*attendance1['A'].cat.codes.values.reshape((1, -1, 1)) + ms['b3'].reshape((-1, 1, 1))*Score_new.reshape((1, 1, -1))/200
y_pred += np.random.normal(scale=ms['sigma'].reshape((-1, 1, 1)), size=y_pred.shape)
y_pred0 = y_pred[:, attendance1['A']==0, :]
y_pred1 = y_pred[:, attendance1['A']==1, :]
columns = ['p{}'.format(p) for p in prob]
d_qua0 = pd.DataFrame(dict(A=0, Score=Score_new))
d_qua0 = pd.concat([d_qua0, pd.DataFrame(np.percentile(y_pred0, prob, axis=(0, 1)).T, columns=columns)], axis=1)
d_qua1 = pd.DataFrame(dict(A=1, Score=Score_new))
d_qua1 = pd.concat([d_qua1, pd.DataFrame(np.percentile(y_pred1, prob, axis=(0, 1)).T, columns=columns)], axis=1)
d_qua = pd.concat([d_qua0, d_qua1], ignore_index=True)

plt.figure(figsize=figaspect(1))
ax = plt.axes()
for i in range(2):
    d_part = d_qua.query('A==@i').sort_values('Score')
    color = sns.color_palette()[i]
    ax.scatter('Score', 'Y', data=attendance1.query('A==@i'), color=color, marker=MarkerStyle.filled_markers[i], label='A={}'.format(i))
    ax.plot('Score', 'p50', data=d_part, color=color, label='')
    ax.fill_between('Score', 'p10', 'p90', data=d_part, color=color, alpha=0.4)
ax.legend()
plt.setp(ax, xlabel='Score', ylabel='Y')
plt.show()

fig5-2.png

d_qua = np.percentile(ms['y_pred'], prob, axis=0).T
d_qua = pd.DataFrame(np.hstack((attendance1, d_qua)), columns=attendance1.columns.tolist()+['p{}'.format(p) for p in prob])

plt.figure(figsize=figaspect(1))
ax = plt.axes()
for v in d_qua['A'].unique():
    d_part = d_qua.query('A == {}'.format(v))
    err_lower = d_part['p50'] - d_part['p10']
    err_upper = d_part['p90'] - d_part['p50']
    ax.errorbar('Y', 'p50', data=d_part, yerr=[err_lower, err_upper], fmt='.', marker=MarkerStyle.filled_markers[int(v)], label='A={}'.format(v))
# ax.axline(1, 1)
_, xmax = ax.get_xlim()
_, ymax = ax.get_ylim()
lim = (0, max(xmax, ymax))
ax.plot(lim, lim, c='k', alpha=3/5)
ax.legend()
plt.setp(ax, xlim=lim, ylim=lim, xlabel='Observed', ylabel='Predicted')
plt.show()

fig5-3.png

PythonにはRのdensity関数に相当するようなものはない(ですよね?)ので、MAP推定値を求めるのにカーネル密度推定してから、元のデータの区間をデータ数で分割した点における最大密度を使用しています。データ数が増えた場合には必要な精度に応じて調整してください。

ms = fit.extract()
N_mcmc = len(ms['lp__'])
d_noise = pd.DataFrame(attendance1['Y'].values - ms['mu'], columns=['noise{}'.format(i) for i in range(len(attendance1.index))])

def get_map(col):
    kernel = stats.gaussian_kde(col)
    dens_x = np.linspace(col.min(), col.max(), kernel.n)
    dens_y = kernel.pdf(dens_x)
    mode_i = np.argmax(dens_y)
    mode_x = dens_x[mode_i]
    mode_y = dens_y[mode_i]
    return pd.Series([mode_x, mode_y], index=['X', 'Y'])

d_mode = d_noise.apply(get_map).T

_, (ax1, ax2) = plt.subplots(1, 2, figsize=figaspect(3/8), sharex=True)
d_noise.plot.kde(ax=ax1, legend=False)
ax1.vlines(d_mode['X'], d_mode['Y'], 0, linestyles='dashed')
sns.rugplot(d_mode['X'], ax=ax1, color='k')
plt.setp(ax1, xlabel='value', ylabel='density')

s_MAP = get_map(ms['sigma'])

sns.distplot(d_mode['X'], hist_kws={'edgecolor':'k', 'facecolor':'w'}, kde_kws={'shade':True}, ax=ax2)
xmin, xmax = ax2.get_xlim()
dens_x = np.linspace(xmin, xmax, 50)
ax2.plot(dens_x, stats.norm.pdf(dens_x, scale=s_MAP['X']), linestyle='dashed')
plt.setp(ax2, xlabel='value', ylabel='count')

plt.show()

fig5-4.png

d = pd.DataFrame()
for name in ms.keys():
    if name == 'y_pred':
        continue
    elif name != 'mu':
        d[name] = ms[name]
    else:
        d['mu1'] = ms[name][:, 0]
        d['mu{}'.format(ms[name].shape[1])] = ms[name][:, -1]
pairplot(d)
plt.show()

fig5-5.png

4
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?